

Properties of Logarithms
()
$$\log_a(uv) = \log_a u + \log_a v$$

() $\log_a(uv) = \log_a u + \log_a v$
() $\log_a(\frac{u}{v}) = \log_a u - \log_a v$
() $\log_a(\frac{u}{v}) = \log_a u - \log_a v$
() $\log_a u^n = n \log_a u$
NOTE: $\log_a x = \log_a x$
(no base, then its base 10)
() $Mx = \log_e x$
() $Mx = \log_e x$
() $Mx = \log_e x$

(1) EXAMPLE
Evaluate or simplify these expressions.
a)
$$\ln(e^2 \cdot e^4) = \ln(e^3) = 6$$
 $\ln e = 6$
 $\ln e = ?$ $(\Rightarrow) = 6$
 $\ln e = ?$ $(\Rightarrow) = e^2 = e^2$
b) $\log_6 2 + \log_6 3$
 $(= \log_6 (2\cdot3) = \log_6 6 = 1$
c) $\log_2 5 - \log_2 40 = \log_6 (\frac{5}{40}) = \log_7 (\frac{1}{8})$
d) $\ln(\frac{6}{e^5})$
 $= \ln 6 - \ln e^5$
 $= \ln 6 - 5$
 $= \ln 6 - 5$

(2) EXAMPLE
Expand these expressions using the properties of
logarithms.
a)
$$\ln(5x) \stackrel{@}{=} l_n S + l_n x$$

b) $\log_5 \sqrt{xy} = \log_5 (xy)^{l_2} \stackrel{@}{=} \frac{1}{2} \log_5 (xy)$
 $\stackrel{@}{=} \frac{1}{2} [\log_5 x + \log_5 y]$
c) $\log \sqrt{\frac{3x}{x-5}} = \log \left(\frac{3x}{x-5}\right)^{l_2} \stackrel{@}{=} \frac{1}{2} \log \left(\frac{3x}{x-5}\right)$
 $\stackrel{@}{=} \frac{1}{2} \left(\log_3 (3x) - \log_3 (x-5)\right)$
 $\stackrel{@}{=} \frac{1}{2} \left(\log_3 (3x) - \log_3 (x-5)\right)$
d) $\ln(y(y-1)^2)$
 $\stackrel{@}{=} \ln y + \ln(y-1)^2$
 $\stackrel{@}{=} \ln x + \ln(x-1)$
WARNING:
 $\ln x^2 = 2 \ln x$
 $\ln x^2 + (\ln x)^2$

3 EXAMPLE

Condense these expressions using properties of logarithms.

a)
$$\log_{5}(2x) + \log_{5}(3y) = \log_{5}(2x \cdot 3y)$$

 $= \log_{5}(6xy)$
b) $5[\ln x - \frac{1}{2}\ln(x+4)] = 5(9x - 9x - 9x - 9x + 9x)$
 $\stackrel{@}{=} 5(9x - 9x - 9x - 9x - 9x + 9x)$
 $\stackrel{@}{=} 5(9x - 9x - 9x - 9x - 9x + 9x)$
 $\stackrel{@}{=} 5(9x - 9x - 9x - 9x - 9x)$
 $\stackrel{@}{=} 3(9x + 6) - 2\log(x - 1)]$
 $\stackrel{@}{=} 3(9x + 6) - 2\log(x - 1)]$
 $\stackrel{@}{=} 3(9x - 9x - 9x - 9x)$
 $\stackrel{@}{=} 3$