MATH 1010 ~ Intermediate Algebra

Chapter 9: EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Section 9.2: Composite and Inverse Functions

Objectives:

* Form compositions of two functions and find the domain.
* Use the Horizontal Line Test to determine whether a function has an inverse.
* Verify that two functions are inverses.
* Find inverse functions algebraically.

$(f \circ g)(x)$

$$
f^{-1}(x)
$$

Composition of Two Functions
(nested functions; function of a function)

$$
f(g(x)) \neq g(f(x))
$$

notation

$$
(f \circ g)(x)=f(g(x))
$$

read" f composed with g of $x^{\prime \prime}$
or " f of g of x "
composition sign
ex

$$
\begin{array}{l|c}
x(x)=2 x^{2}+3 & g(x)=x-9 \\
f(\wp)=25^{2}+3 & g(\varphi)=0-9 \\
& (f \circ g)(x)= \\
f(g(x)) & (g \circ f)(x \\
=f(x-9) & g(f(x)) \\
=2(x-9))^{2}+3 & \left.=g\left(2 x^{2}+3\right)\right) \\
=2(x-9)(x-9)+3 & \left.=2 x^{2}+3\right)-9 \\
=2\left(x^{2}-18 x+81\right)+3 & \\
=2 x^{2}-36 x+162+3 & \\
=2 x^{2}-36 x+165 &
\end{array}
$$

(1) EXAMPLE

Find the compositions. State the domain where applicable.
domain: $x \in \mathbb{R}$ domain: $x \in \mathbb{R}$

$$
f(x)=\sqrt[3]{x-1} \quad g(x)=3 x^{2}+2
$$

(domain)
a) $(g \circ f)(x)=g(f(x))=g(\sqrt[3]{x-1}$
domain: $x \in \mathbb{R}$

$$
\begin{aligned}
& =3(\sqrt[3]{x-1})^{2}+2 \\
& =3(x-1)^{2 / 3}+2
\end{aligned}
$$

b)

$$
\begin{aligned}
(f \circ g)(5)=f(g(5)) & =f\left(3\left(s^{2}\right)+2\right) \\
& =f(75+2)=f(77) \\
& =\sqrt[3]{77-1}=\sqrt[3]{76}
\end{aligned}
$$

c) $(g \circ f)(-2)=g(f(-2))=g(\sqrt[3]{-2-1})=g(\sqrt[3]{-3})$

$$
\begin{aligned}
& =3(\sqrt[3]{-3})^{2}+2 \\
& =3 \sqrt[3]{9}+2
\end{aligned}
$$

(2) EXAMPLE

Evaluate these.

$$
f(x)=x^{3}-1 \quad g(x)=2 x+5
$$

a) $(f \circ g)(0)=f(g(0))=f(2(0)+5)$

$$
=f(s)
$$

$$
=s^{3}-1=125-1=124
$$

$$
\begin{aligned}
& (g \circ f)(2) \\
& g(f(2))=g\left(2^{3}-1\right)=g(7)=2(7)+5=14+5=19
\end{aligned}
$$

An Inverse Function: (1) requirement $1:$ inverse for a function (it has to be a f_{n})
(2) It passes horizontal line test Defy function
 has exactly one output for every input (pastes vertical
notation: $\frac{\text { have an verse }}{p(x)=f^{-1}(x)} \stackrel{\text { inf }}{=} f(g(x))=g(f(x))=x$ line test)
$f^{-1}(x)$ read as " f inverse of x " inverse f_{n} Verify that these are inverse functions.

$$
f(x)=4 x^{3}-5 \quad g(x)=\sqrt[3]{\frac{x+5}{4}}
$$ undoes the base fy

if they are inverses, then $f(g(x))$

$$
\begin{aligned}
f(g(x)) & =f\left(\sqrt[3]{\frac{x+5}{4}}\right)=4\left(\sqrt[3]{\frac{x+5}{4}}\right)^{-3}-5 \\
& =4\left(\frac{x+5}{4}\right)-5 \\
g(f(x)) & =g\left(4 x^{3}-5\right)=x+8-8=x \\
& =\sqrt[3]{\frac{\left(4 x^{3}-8\right)+8}{4}} \\
& =\sqrt[3]{\frac{4 x^{3}}{4}}=\sqrt[3]{x^{3}}=x \quad g(x)=f^{-1}(x)
\end{aligned}
$$

(3) EXAMPLE

Find the inverse of each function if it exists.
Algebraic
Method to find
a) $f(x)=2 x^{5}-1=y$
(1)

$$
\begin{aligned}
& 2 y^{5}-1=x \\
& \frac{2 y^{5}=\frac{x+1}{2}}{2} \begin{array}{l}
y^{5}=\frac{x+1}{2} \Rightarrow y=\sqrt[5]{\frac{x+1}{2}}
\end{array}
\end{aligned}
$$ inverse function

(1) switch the $x \leqslant$ y
(2) solve for y; the remaining fin is inverse f_{n}.
(1) $x=y^{2}+1$

$$
g(x)=y=x^{2}+1
$$

(2) $x-1=y^{2}$

$$
h(x)=x^{g^{2}+1}(x) x \geq 0 \quad h^{-1}(x)=\sqrt{x-1}
$$

c) $h(x)=x^{3}-1$
(1) $x=y^{3}-1$
(2)
 fails hoviz. line test \Rightarrow doesn't have

$$
\begin{aligned}
& x+1=y^{3} \\
& y=\sqrt[3]{x+1}=h^{-1}(x)
\end{aligned}
$$

