MATH 1010 ~ Intermediate Algebra
Chapter 9: EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Section 9.1: Exponential Functions

Objectives:

* Evaluate exponential functions.
\dagger Graph exponential functions.
* Define the natural base e and graph natural exponential functions.
\uparrow Use the natural base e in an application.
$f(x)=e^{x}$

Exponential Functions: fin ω / variable in the exponent
Den

$$
f(x)=a^{x} \quad a>0 \quad a \neq 1
$$

a constant

$$
f(x)=a^{x} \quad f(x)=x^{a}
$$

ex $f(x)=2^{x} \quad$ ex $f(x)=x^{2}$
exponential power/polynomial
basic shape of exp. fr

$$
\begin{array}{l|ll}
& & y=2^{x} \\
x & y & \\
\hline 0 & 1 & y=2^{0} \\
1 & 2 & y=2^{1} \\
2 & 4 & y=2^{2} \\
-1 & 1 / 2 & y=2^{-1} \\
-2 & 1 / 4 & y=2^{-2}
\end{array}
$$

HA (horizontal
 asymptote)
curve never touches or crosses HA $y=0$ HA (for even g basis exponential curve)
(1) EXAMPLE Sketch these using transformations of $y=a^{x}$
a) $y=3^{-x}$

b) $y=-2^{x} \quad$ reflection: base: $y=2^{x} \quad$ vertical

c) $y=5^{x+1}$ base: $y=5^{x}$
horizontal shift: left 1

Introducing a new constant.... meet
e irrational number (in decimal form, the number never ends and doesint repeat) $e \simeq 2.718$

$y=e^{x}$ natural exponential f_{n}
(2) EXAMPLE

Simplify these expressions.
a) $\sqrt{4 e^{6 x}}=\sqrt{4} \sqrt{e^{6 x}}$

$$
=2\left(e^{6 x}\right)^{1 / 2}
$$

$$
=2 e^{3 x}
$$

c) $\left(e^{3}\right)^{2}=e^{6}$
b)

$$
\begin{aligned}
\frac{6}{10 e^{5}} \\
\begin{aligned}
5 & \\
5 & =\frac{3 e^{5-7}}{5} \\
& =\frac{3 e^{-2}}{5} \\
& =\frac{3}{5 e^{2}}
\end{aligned}
\end{aligned}
$$

d)

$$
\begin{aligned}
& e^{2 x} e^{-3 x} \\
= & e^{2 x-3 x} \\
= & e^{-x} \text { or } \frac{1}{e^{x}}
\end{aligned}
$$

(3) EXAMPLE

Evaluate these functions at the given value.
a) $g(x)=10,000(1.03)^{4 x}$

$$
\begin{aligned}
g(1) & =10,000(1.03)^{4(1)}=10000\left(1.03^{4}\right) \\
& \cong 10000(1.1255) \\
& =11255.0881 \\
g(3) & =10000\left(1.03^{12}\right) \simeq 10000(1.425760887) \\
& =14257.60887
\end{aligned}
$$

b) $\quad P(t)=\frac{6000}{2+e^{0.05 t}}$

$$
\begin{gathered}
P(2)=\frac{6000}{2+e^{0.05(2)}}=\frac{6000}{2+e^{0.1}} \simeq \frac{6000}{2+1.105} \\
\simeq(0)=\frac{6000}{2+e^{0.05(0)}}=\frac{6000}{2+e^{0}}=\frac{6000}{2+1} \\
=\frac{6000}{3}=2000
\end{gathered}
$$

APPLICATION
$y=$ ant /value

$$
\begin{aligned}
= \\
a \text { after } t \text { yrs }
\end{aligned}
$$

$$
y=P e^{r t}
$$

$t=$ time ($y_{1 / s}$)
$r=$ interest rate (annual)
$P=$ principal

When your child is born you deposit $\$ 5000$ in an account that pays 3% continuously compounded interest. How much will be there when the child turns 18 ?

$$
\begin{gathered}
P=\$ 5000 \quad r=0.03 \quad t=18 \text { yrs. } \\
y=5000\left(e^{0.03(18)}\right) \\
\cong \$ 8580.03
\end{gathered}
$$

