MATH 1010 ~ Intermediate Algebra
Chapter 8: QUADRATIC EQUATIONS AND FUNCTIONS

Chapter 8: Applications of Quadratic Equations
Objectives:

* Set up and solve problems using quadratic equations.

$$
3 x^{2}-2 x-5=0
$$

1) Height of a Projected Object

An object is projected vertically upward at an initial velocity of 64 feet per second from a height of 192 feet.
The height h at time t is given by $h=-16 t^{2}+64 t+192$.
a) After how many seconds is the height 256 ft ?
b) When does the object hit the ground?
(a) $t=$? when $h=256 \mathrm{ft}$

$$
\begin{aligned}
& 256=-16 t^{2}+64 t+192 \\
& -256 \\
& 0=-16 t^{2}+64 t-64 \\
& 0=-16\left(t^{2}-4 t+4\right) \\
& 0=\frac{-16(t-2)(t-2)}{-16} \\
& 0=(t-2)(t-2) \\
& t-2=0 \\
& t=2 \mathrm{sec}
\end{aligned}
$$

(b) $t=$? when $h=0$

$$
\begin{aligned}
& h=-16 t^{2}+64 t+192 \\
& O=-16 t^{2}+64 t+192 \\
& 0=-16\left(t^{2}-4 t-12\right) \\
& 0=-16(t-6)(t+2) \\
& t-6=0 \quad \text { or } \quad t+2=0 \\
& t=6 \mathrm{sec} \quad t=-2
\end{aligned}
$$

2) Geometry

The perimeter of my computer screen is 72 inches. The diagonal distance is 26 inches.
What are the dimensions of the screen?

(2) $x^{2}+y^{2}=676$
use substitution:
(1) $\frac{72}{2}=\frac{2 x}{2}+\frac{2 y}{2} \Leftrightarrow 36=x+y$

$$
y=36-x
$$

(2) $x^{2}+(36-x)^{2}=676$
$x^{2}+(36-x)(36-x)=676$
$\begin{aligned} x^{2}+1296-36 x-36 x+x^{2} & =676 \\ 2 x^{2}-772 x+6 & -676\end{aligned}$ $2 x^{2}-72 x+620=0$
$\frac{2\left(x^{2}-36 x+310\right)}{x}=\frac{0}{2}$
use quadratic formula:

$$
x^{2}-36 x+310=0
$$

$$
\begin{aligned}
a & =1, b=-36, c=310 \\
x & =\frac{36 \pm \sqrt{(-36)^{2}-4(1)(310)}}{2(1)} \\
& =\frac{36 \pm \sqrt{1296-1240}}{2}=\frac{36 \pm \sqrt{56}}{2}
\end{aligned}
$$

$$
x=\frac{36 \pm \sqrt{4} \sqrt{14}}{2}=\frac{36 \pm 2 \sqrt{14}}{2}
$$

$$
x=\frac{h(18 \pm \sqrt{14})}{2}
$$

$$
x=18 \pm \sqrt{14}=18+\sqrt{14} \simeq 21.7
$$

$$
o 18-\sqrt{14}=14.3
$$

$y=36-x$
$x=18+\sqrt{14} \Rightarrow y=36-(18+\sqrt{14})=18-\sqrt{14}$
$x=18-\sqrt{14} \Rightarrow y=36-(18-\sqrt{14})=18+\sqrt{14}$
dimensions: $18+\sqrt{14}$ and $18-\sqrt{14}$
~ 21.7 in by 14.3 in
3) Reduced Rates

The Glee Club charters a bus to attend a competition. The cost of the bus is $\$ 480$. To lower the bus fare per person, the club invites nonmembers to go along. When two non-members join the trip, the fare per person is decreased by $\$ 1.00$. How many people are taking the bus to the competition?
$x=$ fuimbu of people on bus
ongungl $480=p(x-2)$ tom (2) $480=(p-1) x$

(1) (Solve for p.) $\frac{480}{x-2}=\frac{p(x-2)}{x-2}$

$$
p=\frac{480}{x-2}
$$

(2) $480=\left(\frac{480}{x-2}-1\right) x$
$(x-2)(480)=\left(\frac{480 x}{x-2}-x\right)(x-2)$

$$
\begin{aligned}
& 480(x-2)=\frac{480 x(x-2)}{(x-2)}-x(x-2) \\
& 480 x-960=480 x-x^{2}+2 x \\
& -480 x+x^{2}-2 x \quad-480 x+x^{2}-2 x \\
& x^{2}-2 x-960=0 \\
& a=1, b=-2, c=-960 \\
& x=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(-960)}}{2(1)} \\
& x=\frac{2 \pm \sqrt{4+3840}}{2} \\
& x=\frac{2 \pm \sqrt{3844}}{2}=\frac{2 \pm 62}{2}=\frac{2+62}{2}=32
\end{aligned}
$$

