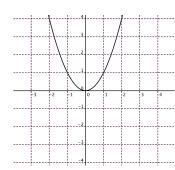
Chapter 8.4: Graphing Quadratic Functions

Objectives

- Determine the vertex of a parabola by completing the square or finding the x-intercepts.

 Sketch a parabola.


 Given a graph, write the equation of the parabola.

 Use this information in application problems.

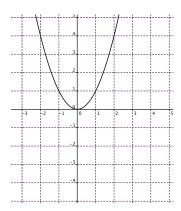
$$3(x+1)^2 - 5 = y$$

The graph of the basic quadratic function looks like this.

$$y = x^2$$

- *Key items to note:
- *Vertex at (0,0)
- *Axis of symmetry
- *Key symmetric points on the left and right of the vertex.

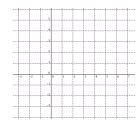
Transformations to the graph from $y = x^2$ to $y = a(x-h)^2 + k$ (standard form)


Stretch

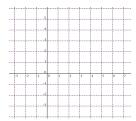
Reflect

Shift

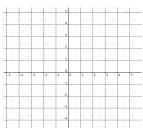
$$y = -2(x-3)^2 - 1$$


$y = x^2$	y = 2x2	y = -2x2	$y = -2(x-3)^2$	y = -2(x-3)2-1
(0,0)				
(-1,1)				
(1,1)				

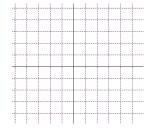
Two ways to graph a quadratic function are:


- If it is in factored form
 a. Find the x-intercepts.
 b. Find the x-value halfway between the x-intercepts. This will be the x-value of the vertex.
 c. Determine the y-value of the vertex.
 d. Plot the vertex and intercepts.

$$y = (x-3)(x+1)$$

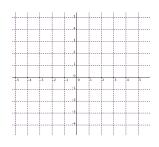

- If it is not factorable or you prefer not to factor it
 a. Complete the square to put it in standard form.
 b. Plot the vertex.
 c. Plot the symmetric points 1 unit to the left and right of the vertex.

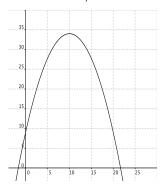
$$y = x^2 + 6x + 5$$



Ex 1: Find the vertex of this parabola by completing the square, then, sketch the parabola. $f(x) = -x^2 - 4x - 3$

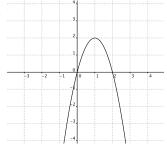
$$f(x) = -x^2 - 4x - 3$$


EX 2: Find the vertex of this parabola by factoring, then sketch it. $f(x) = x^2 + 4x - 5$


Ex 3: Use symmetry to find the vertex of this parabola, then sketch it.

Hint: Find the y-intercept, then find the symmetric point at which it intersects with the line y = 5. Use these two points to determine the vertex.

$$f(x) = 2x^2 + 6x + 5$$


- Ex 4: A child launches a toy spaceship from their treehouse. The height of the rocket is given by the function, $h(x) = -\frac{1}{4}x^2 + 5x + 9$, where x is the horizontal distance in feet from the base of the tree.
 - a) Determine the height from which the spaceship is launched.
 - b) What is the maximum height the rocket attains?
 - c) How far from the base of the tree where it is launched does the rocket land? (Assume flat ground around the tree.)

Ex 5: Write an equation for this function in two different forms,

General: $y = ax^2 + bx + c$

Standard: $y = a(x-h)^2 + k$

