Chapter 8: QUADRATIC EQUATIONS AND FUNCTIONS

Chapter 8.4: Graphing Quadratic Functions

Objectives:

* Determine the vertex of a parabola by completing the square or finding the x-intercepts.
* Sketch a parabola.
* Given a graph, write the equation of the parabola.
* Use this information in application problems.

The graph of the basic quadratic function looks like this.

$$
y=x^{2}
$$

parabola, concave up
*Key items to note:
*Vertex at $(0,0)$
*Axis of symmetry $(x=0) \quad y$-axis
*Key symmetric points on the left and right of the vertex.
ako $y=x^{2}$ is an even function

Transformations to the graph from $y=x^{2}$ to $y=a(x-h)^{2}+k$ standard form)

Stretch $|a|$ if $|a|>1$, then vert. stretch (skinnier pavid $1 a$) if $|a|<1$, then vert. shrink
Reflect vert reflection if $a<0$
Shift (h, k) is the new vertex

$$
y=-2(x-3)^{2}-1
$$

Two ways to graph a quadratic function are:

1. If it is in factored form
a. Find the x-intercepts.
b. Find the x-value halfway between the x-intercepts. This will be the x-value of the vertex.
c. Determine the y-value of the vertex.
d. Plot the vertex and intercepts.
$y=(x-3)(x+1) \quad x$-intercepts occur when $y=0$

$$
\begin{aligned}
& 0=(x-3)(x+1) \quad \text { vertex }(1,-4) \\
& \begin{array}{rl}
y-3=0 \text { or } x+1=0 & y=(1-3)(1+1) \\
=-2(2)=-4
\end{array} \\
& x=3 \text { or } x=-1 \Rightarrow(3,0)(-1,0)
\end{aligned}
$$

2. If it is not factorable or you prefer not to factor it
a. Complete the square to put it in standard form.
b. Plot the vertex.
c. Plot the symmetric points 1 unit to the left and right of the vertex.

$$
\begin{aligned}
& y=x^{2}+6 x+5 \quad\left(\frac{6}{2}\right)^{2}=3^{2}=9 \\
& y=\left(x^{2}+6 x+9\right)+5-9 \\
& y=(x+3)^{2}+-4 \\
& \Rightarrow \text { vertex }(-3,-4) \quad \text { no stree } \\
& (-2,-3) \\
& (-4,-3)
\end{aligned}
$$

Ex 1: Find the vertex of this parabola by completing the square, then, sketch the parabola.

$$
\begin{aligned}
& \qquad y=f(x)=-x^{2}-4 x-3 \\
& y=-\left(x^{2}+4 x+4\right)-3+4 \\
& y=-(x+2)^{2}+1 \\
& \text { * vertex }(-2,1) \\
& \text { * vert. reflection }
\end{aligned}
$$

EX 2: Find the vertex of this parabola by factoring, then sketch it.

$$
\begin{aligned}
& f(x)=x^{2}+4 x-5 \\
& y=(x+5)(x-1)
\end{aligned}
$$

X-intercepts:

$$
\begin{aligned}
& 0=(x+5)(x-1) \\
& x+5=0 \text { or } x-1=0 \\
& x=-5 \text { or } x=1 \\
& (-5,0)(1,0) \\
& \Rightarrow \text { vertex }(-2,-9)
\end{aligned}
$$

$$
y=(-2+5)(-2-1)=3(-3)--9
$$

Ex 3: Use symmetry to find the vertex of this parabola, then sketch it.
Hint: Find the y-intercept, then find the symmetric point at which it intersects with the line $y=5$. Use these two points to determine the vertex.

$$
\begin{aligned}
& f(x)=2 x^{2}+6 x+5 \\
& \text { coefficient of } x^{2}
\end{aligned}
$$

is positive \Rightarrow concave up
y-inter apt occurs where $x=0$:

$$
y=0+0+5 \Rightarrow(0,5)
$$

Due to symmetry, Here's

exactly one other pt on parabola w/ same y-value.

$$
\begin{array}{r}
\begin{array}{r}
S \\
-5 \\
-5 x^{2}+6 x+5 \\
-5
\end{array} \quad \Rightarrow \text { vertex at }(-1,5, ?) \\
0=2 x^{2}+6 x \\
0=2 x(x+3) \\
x=0 \text { or } x+3=0 \\
x=-3 \tag{-3,5}
\end{array} \quad \Rightarrow \text { parabola goes through }
$$

when $x=-1.5$,

$$
\begin{aligned}
y & =2(-1.5)^{2}+6(-1.5)+5 \\
& =2(2.25)-9+5 \\
& =4.5-9+5 \\
& =-4.5+5 \quad \Rightarrow \text { vertex } \quad(-1.5,0.5) \\
& =0.5
\end{aligned}
$$

Ex 4: A child launches a toy spaceship from their rehouse. The height of the rocket is given by the function, $h(x)=-\frac{1}{4} x^{2}+5 x+9$, where x is the horizontal distance in feet from the base of the tree.
a) Determine the height from which the spaceship is launched.
launch occurs when $x=0 \mathrm{ft}$.

$$
h=0+0+9=9 \mathrm{ft} .
$$

b) What is the maximum height the rocket attains?

Since leading coefficient is negative, we have concave down parabola.
\Rightarrow max $h t$ is $h=34 \mathrm{ft}$.
c) How far from the base of the tree where it is launched does the rocket land? (Assume flat ground around the tree.)
landing occurs when $h=0 \mathrm{ft}$.
at that pt

$$
x=22 \mathrm{ft} .
$$

Ex 5: Write an equation for this function in two different forms,
General: $y=a x^{2}+b x+c$
Standard: $y=a(x-h)^{2}+k$
vertex at $(1,2)$

$$
y=-2(x-1)^{2}+2
$$

(check that this goes through

$$
(0,0) \text { and }(2,0))
$$

to get general form, multiply this out.

$$
\left.\begin{array}{l|r}
y=-2\left(x^{2}-2 x+1\right)+2 \\
y=-2 x^{2}+4 x-2+2 \\
y=-2 x^{2}+4 x
\end{array} \right\rvert\, \begin{aligned}
(x-1)^{2} & =x^{2}-x-x+1 \\
& =x^{2}-2 x+1
\end{aligned}
$$

Also note, x-intercepts at $(0,0)$ and $(2,0)$

$$
\begin{aligned}
\Rightarrow y & =a(x-0)(x-2) \\
y & =a(x)(x-2) \text { and } a=-2 \text { for this } \\
y & =-2 x(x-2) \text { (factored form) graph }
\end{aligned}
$$

