


The Imaginary Unit 
$$\emph{\textbf{i}}$$

 $\sqrt{-1} = i$ 

Powers of 
$$i$$

$$i^1 =$$

$$i^2 =$$

$$i^3 =$$

$$i^4$$
 —

$$i^{5} =$$

$$i^6 =$$

$$i^7 =$$

① Simplify these.

a) 
$$\sqrt{-9} =$$

a) 
$$\sqrt{-9} = b$$
 b)  $\sqrt{-27} =$ 

c) 
$$\sqrt{-\frac{81}{8}} =$$

## **Standard Form of Complex Numbers**

$$a + bi$$

## **Equality of Two Complex Numbers**

$$a + bi = c + di$$

## **Operations on Complex Numbers**

Addition and Subtraction:

## 2 EXAMPLE

Combine and simplify these.

a) 
$$(3-i)+(-2+5i)$$

b) 
$$2-i+\sqrt{25}-\sqrt{-49}$$

c) 
$$7 + 3i + 1 - \sqrt{-8} - \sqrt{-4}$$

**Multiplying Complex Numbers** 

③ EXAMPLE Multiply and simplify these.

a) 
$$(2-3i)(\sqrt{-4})$$

b) 
$$(3-4i)(2+5i)$$

c) 
$$(4-i)(4+i)$$

**Complex Conjugates** 

**4** EXAMPLE

Determine the conjugate of each of these and multiply the number and the conjugate.

a) 
$$7 - 3i$$

b) 
$$-8+2i$$

c) 
$$9\sqrt{3} - 2\sqrt{5}i$$

**Division of Complex Numbers** 

- ⑤ EXAMPLE
  Determine the quotient of these.
  - a)  $\frac{2-3i}{2i}$
  - $b) \quad \frac{6}{4+i}$
  - c)  $\frac{2-4i}{1+3i}$

A few more things:

- a)  $i^{25}$
- b)  $i^{177}$
- c)  $i^{104}$

Remember this:

$$\sqrt{-72}\sqrt{-8} = \frac{\sqrt{-72}}{\sqrt{-8}} =$$