Section 7.5: Solving Radical Equations

Objective:

* Solve a radical equation.

$$\sqrt{2x-1} - \sqrt{3x} = 2$$

TRUE or FALSE?

Strategy for Solving Radical Egn If u = v, then $u^n = v^n$. Described one of the radical expressions on one side of agn.

2 Raise both sides of egon to the power that will undo the

3 Finish solving.

1 **EXAMPLE** Solve for the variable. WARNING: chick answers for all even root eggns.

a)
$$\sqrt{x} - 5 = 0$$

 $(\sqrt{x}) = (5)^{3}$
 $x = 25$

b)
$$\sqrt{x^2+5}-3=0$$

 $(\sqrt{x^2+5})^2=(3)^2$
 $x^2+5=9$
 $x^2=4$
 $x^2=2$
 $x^2=2$
 $x^2=2$
 $x^2=2$
 $x^2=2$
 $x^2=2$
 $x^2=2$

c)
$$\sqrt{3y+1} - \sqrt{y+15} = 0$$

 $(\sqrt{3y+1})^{2} - (\sqrt{y+15})^{2}$
 $3y+1 = y+15$
 $2y+1=15$
 $y=7$

$$d) \left(2\sqrt[3]{10-3x}\right) = \left(\sqrt[3]{2-x}\right)^{3}$$

$$2^{3}(10-3x)=2-x$$
=
$$8(10-3x)=2-x$$

$$8D-24x=2-x$$

EXAMPLE

Solve for the variable. Check: $\sqrt{\frac{13}{4}+3} - \sqrt{\frac{13}{4}-1} = \sqrt{\frac{24}{4}} - \sqrt{\frac{9}{4}}$ = 5-3=1 / a) $\sqrt{x+3} - \sqrt{x-1} = 1$ $\left(\sqrt{X+3}\right)_{5} = \left(1+\sqrt{X-1}\right)_{5}$ $X + 3 = (1 + \sqrt{x-1})(1 + \sqrt{x-1})$ $x+3=1+\sqrt{x-1}+\sqrt{x-1}+x-1$ $x+2=4-2\sqrt{x}-2\sqrt{x}+x$ $x+3=2\sqrt{x-1}+x$ $x+4=4-2\sqrt{x}-2\sqrt{x}+x$ $x+5=4+x-4\sqrt{x}$ $x+6=4+x-4\sqrt{x}$ $\frac{3}{3} = 5\sqrt{x-1}$

check: V=+V+2===+1= $b) \quad \sqrt{x} + \sqrt{x+2} = 2$ $\left(\sqrt{\chi+2}\right)^2 = \left(2-\sqrt{\chi}\right)^2$ X+5=(5-1x)(5-1x) Solve for the variable.

a)
$$(x+4)^{5/3} = 32$$

 $((x+4)^{5/3})^{3/5} = 32^{3/5}$
 $x+4=32^{3/5}$
 $x+4=\sqrt{5/3}2^{3}$
 $x+4=\sqrt{5/3}2^{3$

b)
$$\sqrt{x} = x - 6$$

 $(\sqrt{x})^2 = (x - 6)^2$
 $x = (x - 6)(x - 6)$
 $x = x^2 - 6x - 6x + 36$
 $x = x^2 - 12x + 36$
 $0 = x^2 - 13x + 36$
 $0 = (x - 4)(x - 9)$
 $x - 4 = 0$ or $x = 9 = 0$
 $x = 4$ or $x = 9$
which $\sqrt{x} = x - 6$
 $x = x^2 - 2$ NO
 $x = 9$: $\sqrt{9} = 9 - 6$