MATH 1010 ~ Intermediate Algebra

Chapter 7: RADICALS AND COMPLEX NUMBERS

Section 7.4: Multiplying and Dividing Radical Expressions

 Objectives:* Use the distributive property to multiply radical expressions.
* Determine the product of conjugates.
* Simplify quotients involving radicals by rationalizing the denominators.
$\left(5 \sqrt{x^{3}}\right)(-x \sqrt{4 x}) \div(3 x \sqrt{x})$

Rule for Multiplying and Dividing Radical Expressions

$$
\sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a b} \quad \begin{gathered}
\text { ex } \\
\sqrt{3} \sqrt{5} \\
=\sqrt{15}
\end{gathered}
$$

and
Roots (radicals)
$\sqrt[n]{a} \div \sqrt[n]{b}=\sqrt[n]{\frac{a}{b}} \begin{aligned} & \text { distribute through } \\ & \text { multiplication \& } \\ & \text { division }\end{aligned}$ WARNING: Roots never distribute through addition or subtraction (ex $\sqrt{1+3} \neq \sqrt{1}+\sqrt{3}$)
(1) EXAMPLE

Multiply and simplify.
a) $\sqrt{6} \cdot \sqrt{2}=\sqrt{12}=\sqrt{4} \sqrt{3}=2 \sqrt{3}$
b) $\sqrt[3]{6} \cdot \sqrt[3]{16}=\sqrt[3]{(2 \cdot 3)(2(2 \cdot 2 \cdot 2)}=\sqrt[3]{12} \sqrt[3]{2^{3}}$ $=2 \sqrt[3]{12}$
c)

$$
\begin{aligned}
\sqrt{5}(2+\sqrt{3}) & =2 \sqrt{5}+\sqrt{5} \sqrt{3} \\
& =2 \sqrt{5}+\sqrt{15}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \sqrt{6}(\sqrt{12}-\sqrt{3}) \\
= & \sqrt{6}(\sqrt{4} \sqrt{3}-\sqrt{3}) \\
= & \sqrt{6}(2 \sqrt{3}-\sqrt{3}) \\
= & \sqrt{6}(\sqrt{3}) \\
= & \sqrt{6 \cdot 3}=\sqrt{2 \cdot 3^{2}} \\
= & \sqrt{2} \sqrt{3^{2}} \\
= & 3 \sqrt{2}
\end{aligned}
$$

(2) EXAMPLE

Perform the indicated operation and simplify the answer.
a) $(2 \sqrt{7}-3)(\sqrt{7}+2)=2 \sqrt{7} \sqrt{7}+2 \cdot 2 \sqrt{7}-3 \sqrt{7}-6$

$$
\begin{aligned}
& =2(7)+4 \sqrt{7}-3 \sqrt{7}-6 \\
& =14+\sqrt{7}-6=8+\sqrt{7}
\end{aligned}
$$

b)

$$
\begin{aligned}
& (2-\sqrt{x}(1+\sqrt{x}) \\
= & 2+2 \sqrt{x}-\sqrt{x}-\sqrt{x^{2}} \\
= & 2+\sqrt{x}-x
\end{aligned}
$$

c) $(3-\sqrt{x})(3+\sqrt{x})$ (note: $x \geq 0 \Rightarrow \sqrt{x^{2}}=x$)

$$
\begin{aligned}
& =9+3 \sqrt{x}-3 \sqrt{x}-\sqrt{x^{2}} \\
& =9-x
\end{aligned}
$$

The conjugate of $\sqrt{a}+\sqrt{b}$ is $\sqrt{a}-\sqrt{b}$

The conjugate of $\sqrt{a}-\sqrt{b}$ is $\sqrt{a}+\sqrt{b}$
note: $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})$

$$
\begin{aligned}
& =a-\sqrt{a b}+\sqrt{a b}-\sqrt{b^{2}} \\
& =a-b
\end{aligned}
$$

(3) EXAMPLE

Determine the conjugate of each expression and multiply the expression by it.
a) $2+\sqrt{7}$ conjugate: $2-\sqrt{7}$

$$
\begin{aligned}
(2+\sqrt{7})(2-\sqrt{7}) & =4-2 \sqrt{7}+2 \sqrt{7}-\sqrt{7^{2}} \\
& =4-7=-3
\end{aligned}
$$

b) $3-\sqrt{5}$ conjugate: $3+\sqrt{5}$

$$
\begin{aligned}
(3-\sqrt{5})(3+\sqrt{5}) & =9+3 \sqrt{5}-3 \sqrt{5}-\sqrt{5^{2}} \\
& =9-5=4
\end{aligned}
$$

c) $2 \sqrt{3}+\sqrt{x}$
conjugate: $\quad 2 \sqrt{3}-\sqrt{x}$

$$
\begin{aligned}
& (2 \sqrt{3}+\sqrt{x})(2 \sqrt{3}-\sqrt{x}) \\
& =4(3)-2 \sqrt{3} \sqrt{x}+2 \sqrt{3} \sqrt{x}-x \\
& =12-x
\end{aligned}
$$

(4) EXAMPLE

Rationalize the denominators and simplify. try
a) $\left(\frac{\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{\sqrt{5}}{\sqrt{5}}\right)=\frac{\sqrt{15}}{\sqrt{5}-5}$ doesn't work $\left(\frac{\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{1+\sqrt{5}}\right)=\frac{\sqrt{3}(1+\sqrt{5})}{1+\sqrt{5}-\sqrt{5}-\sqrt{25}}=\frac{\sqrt{3}(1+\sqrt{5})}{1-5}$
$=\left(\frac{7}{x-\sqrt{3}}\right)\left(\frac{x+\sqrt{3}}{x+\sqrt{3}}\right)=\frac{7(x+\sqrt{3})}{x^{2}+\sqrt{3} x-\sqrt{3} x-3}=\frac{\sqrt{3}(1+\sqrt{5})}{-4}$ $\sqrt{3} \sqrt{3}=3$

$$
\begin{aligned}
& =3 \\
& =\frac{5 \sqrt{2}}{3 \sqrt{2}+\sqrt{6}}=\frac{5(x+\sqrt{3})}{x^{2}-3} \\
& \frac{5 \sqrt{2}}{3 \sqrt{2}+\sqrt{2} \sqrt{3}}=\frac{5 \sqrt{2}}{\sqrt{7}(3+\sqrt{3})}=\left(\frac{5}{3+\sqrt{3})}\left(\frac{3 \sqrt{3}}{3-\sqrt{3}}\right)=\frac{5(3-\sqrt{3})}{9-3 \sqrt{3}+3 \sqrt{3-3}}\right. \\
& \text { d) }\left(\frac{2-\sqrt{3}}{\sqrt{2}+\sqrt{7}}\right)\left(\frac{\sqrt{2}-\sqrt{7}}{\sqrt{2}-\sqrt{7}}\right) \\
& =\frac{2 \sqrt{2}-2 \sqrt{7}-\sqrt{6}+\sqrt{21}}{2-\sqrt{14}+\sqrt{74}-7}=\frac{2 \sqrt{2}-2 \sqrt{7}-\sqrt{6}+\sqrt{21}}{-5}
\end{aligned}
$$

