MATH 1010 ~ Intermediate Algebra

Chapter 7: RADICALS AND COMPLEX NUMBERS

Section 7.4: Multiplying and Dividing Radical Expressions Objectives:

- ★ Use the distributive property to multiply radical expressions.
- ★ Determine the product of conjugates.
- * Simplify quotients involving radicals by rationalizing the denominators.

$$(5\sqrt{x^3})(-x\sqrt{4x}) \div (3x\sqrt{x})$$

Rule for Multiplying and Dividing Radical Expressions

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$$

$$= \sqrt{15}$$
and
$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{\frac{a}{b}}$$

$$\sqrt[n]{a} \div \sqrt[n]{b} = \sqrt[n]{\frac{a}{b}}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{\frac{a}{b}}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{a} = \sqrt[n]{a} = \sqrt[n]{a}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{a} = \sqrt[n]{a} = \sqrt[n]{a}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{a} = \sqrt[n]{a} = \sqrt[n]{a} = \sqrt[n]{a}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{a} = \sqrt$$

EXAMPLE
 Multiply and simplify.

a)
$$\sqrt{6} \cdot \sqrt{2} = \sqrt{12} = \sqrt{4} \sqrt{3} = 2\sqrt{3}$$

b)
$$\sqrt[3]{6} \cdot \sqrt[3]{16} = \sqrt[3]{2 \cdot 3} \times 2^{3} = \sqrt[3]{12} \times 2^{3} = \sqrt[3]{12}$$

c)
$$\sqrt{5(2+\sqrt{3})} = 2\sqrt{5} + \sqrt{5}\sqrt{3}$$

d)
$$\sqrt{6}(\sqrt{12} - \sqrt{3})$$

= $\sqrt{6}(\sqrt{12} - \sqrt{3})$
= $\sqrt{6}(\sqrt{13} - \sqrt{3})$
= $\sqrt{6}(\sqrt{3} - \sqrt{3})$

2 EXAMPLE

Perform the indicated operation and simplify the answer.

a)
$$(2\sqrt{7}-3)(\sqrt{7}+2)=2\sqrt{7}\sqrt{7}+72\sqrt{7}-3\sqrt{7}-6$$

 $=2(7)+4\sqrt{7}-3\sqrt{7}-6$
 $=|4+\sqrt{7}-6|=8+\sqrt{7}$
b) $(2-\sqrt{x})(1+\sqrt{x})$ (nok: $\times \geq 0$)
 $=\sqrt{x}=x$
 $=2+2\sqrt{x}-\sqrt{x}$
 $=2+2\sqrt{x}-\sqrt{x}$
 $=(3-\sqrt{x})(3+\sqrt{x})$ (nok: $\times \geq 0$) $=\sqrt{x}=x$)
 $=9+3\sqrt{x}-3\sqrt{x}-\sqrt{x}^2$
 $=9-x$

The conjugate of $\sqrt{a} + \sqrt{b}$ is $\sqrt{a} - \sqrt{b}$

The conjugate of $\sqrt{a} - \sqrt{b}$ is $\sqrt{a} + \sqrt{b}$

3 EXAMPLE

Determine the conjugate of each expression and multiply the expression by it.

a)
$$2+\sqrt{7}$$
 conjugate: $2-\sqrt{7}$
 $(2+\sqrt{7})(2-\sqrt{7})=4-2\sqrt{7}+2\sqrt{7}-\sqrt{7}$
 $=4-7=-3$
b) $3-\sqrt{5}$ conjugate: $3+\sqrt{5}$
 $(3-\sqrt{5})(3+\sqrt{5})=9+3\sqrt{5}-3\sqrt{5}-\sqrt{5}$
 $=9-5=4$
c) $2\sqrt{3}+\sqrt{x}$
conjugate: $2\sqrt{3}-\sqrt{x}$
 $(2\sqrt{3}+\sqrt{x})(2\sqrt{3}-\sqrt{x})$
 $=4(3)-2\sqrt{3}\sqrt{x}+2\sqrt{3}\sqrt{x}-x$
 $=12-x$

4 EXAMPLE

Rationalize the denominators and simplify.

$$a) \left(\frac{\sqrt{3}}{1-\sqrt{5}}\right) \left(\frac{\sqrt{5}}{\sqrt{5}}\right) = \frac{\sqrt{15}}{\sqrt{5}-5}$$

$$(1-\sqrt{5}) \left(\frac{1+\sqrt{5}}{1+\sqrt{5}}\right) = \frac{\sqrt{3}(1+\sqrt{5})}{1+\sqrt{5}-\sqrt{5}-\sqrt{25}} = \frac{\sqrt{3}(1+\sqrt{5})}{1-5}$$

$$= \frac{1}{1+\sqrt{5}} \left(\frac{1+\sqrt{5}}{1+\sqrt{5}}\right) = \frac{\sqrt{3}(1+\sqrt{5})}{1+\sqrt{5}-\sqrt{5}-\sqrt{25}} = \frac{\sqrt{3}(1+\sqrt{5})}{1+\sqrt{5}}$$

$$= \frac{7}{(x+\sqrt{3})} \left(\frac{x+\sqrt{3}}{x+\sqrt{3}}\right) = \frac{7(x+\sqrt{3})}{x^2+\sqrt{2}x-\sqrt{2}x-3}$$

$$= \frac{7}{(x+\sqrt{3})} \left(\frac{x+\sqrt{3}}{x^2-3}\right) = \frac{7(x+\sqrt{3})}{x^2-\sqrt{3}}$$

$$= \frac{7}{(x+\sqrt{3})} \left(\frac{3+\sqrt{3}}{x^2-\sqrt{3}}\right) = \frac{7}{(x+\sqrt{3})} = \frac{7}{(x+\sqrt{3})}$$

$$= \frac{7}{(x+\sqrt{3})} \left(\frac{3+\sqrt{3}}{x^2-\sqrt{3}}\right) = \frac{7}{(x+\sqrt{3})}$$

$$= \frac{7}{(x+\sqrt{3})} \left(\frac{3+\sqrt{3}}{x^2-\sqrt{3}}\right) = \frac{7}{(x+\sqrt{3})} = \frac{7}{(x+\sqrt{3})}$$

$$= \frac{7}{(x+\sqrt{3})} \left(\frac{3+\sqrt{3}}{x^2-\sqrt{3}}\right) = \frac{7}{(x+\sqrt{$$