MATH 1010 ~ Intermediate Algebra
Chapter 7: RADICALS AND COMPLEX NUMBERS

Section 7.3: Adding and Subtracting Radical Expressions Objectives:

* Use the distributive property to add and subtract like radicals.
* Use radical expressions in application problems.

$$
5 \sqrt{x^{3}}-x \sqrt{4 x}+3 x \sqrt{x}=
$$

Like radicals can be added or subtracted using their coefficients.
ax $\sqrt{2}+\sqrt{2}=2 \sqrt{2}$

$$
x+x=2 x
$$

(1) EXAMPLE

Combine these where possible.
a) $5 \sqrt{3}-2 \sqrt{3}=3 \sqrt{3}$
b) $12 \sqrt{8}-3 \sqrt[3]{8}=12 \sqrt{4} \sqrt{2}-3(2)$ $\sqrt{8} \neq \sqrt[3]{8} \quad=24 \sqrt{2}-6$
c) $14 \sqrt[5]{2}-6 \sqrt[5]{2}=8 \sqrt[5]{2}$
d) $5 \sqrt{12}+16 \sqrt{27}$

$$
\begin{aligned}
& =5 \sqrt{4} \sqrt{3}+16 \sqrt{9} \sqrt{3} \\
& =5(2) \sqrt{3}+16(3) \sqrt{3} \\
& =10 \sqrt{3}+48 \sqrt{3}=58 \sqrt{3}
\end{aligned}
$$

(2) EXAMPLE

Combine these where possible.
a)

$$
\begin{aligned}
\sqrt[3]{54 x}-\sqrt[3]{2 x^{4}} & =\sqrt[3]{27} \sqrt[3]{2 x}-\sqrt[3]{x^{3}} \sqrt[3]{2 x} \\
& =3 \sqrt[3]{2 x}-x \sqrt[3]{2 x} \\
& =\sqrt[3]{2 x}(3-x)
\end{aligned}
$$

b)

$$
\begin{aligned}
& \sqrt{9 x-9}-\sqrt{x^{3}-x^{2}} \\
= & \sqrt{9(x-1)} \\
= & -\sqrt{x^{2}(x-1)}=\sqrt{9} \sqrt{x-1}-\sqrt{x^{2}} \sqrt{x-1} \\
= & 3 \sqrt{x-1}-|x| \sqrt{x-1}=\sqrt{x-1}(3-|x|)
\end{aligned}
$$

c)

$$
\begin{aligned}
& 6 \sqrt{x}-\sqrt[3]{4}-5 \sqrt{x}+2 \sqrt[3]{4} \\
= & (6 \sqrt{x}-5 \sqrt{x})+(2 \sqrt[3]{4}-\sqrt[3]{4}) \\
= & \sqrt{x}+\sqrt[3]{4}
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
& 5 \sqrt{x^{3}}-x \sqrt{4 x} \\
= & 5 \sqrt{x^{2}} \sqrt{x}-x \sqrt{4} \sqrt{x} \\
= & 5|x| \sqrt{x}-x(2) \sqrt{x} \\
= & 5|x| \sqrt{x}-2 x \sqrt{x}
\end{aligned}
$$

(assume $x \geq 0$) $\Rightarrow|x|=x$.

$$
\begin{aligned}
& =5 \times \sqrt{x}-2 \times \sqrt{x} \\
& =3 \times \sqrt{x}
\end{aligned}
$$

assume $x>0$

$$
\begin{aligned}
& \text { f) } \frac{8}{\sqrt{5 x}}+\sqrt{5 x}=\frac{8}{\sqrt{5 x}}\left(\frac{\sqrt{5 x}}{\sqrt{5 x}}\right)+\sqrt{5 x} \\
& =\frac{8 \sqrt{5 x}}{\sqrt{5^{2} x^{2}}}+\sqrt{5 x}=\frac{8 \sqrt{5 x}}{5 x}+\sqrt{5 x} \\
& \text { g) } \sqrt{\frac{4}{3 x^{3}}}+\sqrt{3 x^{3}} \\
& =\sqrt{5 x}\left(\frac{8}{5 x}+1\right) \\
& \Rightarrow \sqrt{x^{2}}=x \quad \sqrt{3 x^{3}}=\sqrt{3 x} \sqrt{x^{2}}=x \sqrt{3 x} \\
& =\frac{\sqrt{4}}{\sqrt{3 x^{3}}}+\sqrt{3 x^{3}}=\frac{2}{x \sqrt{3 x}}+x \sqrt{3 x} \\
& =\frac{2}{x \sqrt{3 x}}\left(\frac{\sqrt{3 x}}{\sqrt{3 x}}\right)+x \sqrt{3 x} \\
& =\frac{2 \sqrt{3 x}}{x(3 x)}+x \sqrt{3 x} \\
& =\sqrt{3 x}\left(\frac{2}{3 x^{2}}+x\right)
\end{aligned}
$$

Application:
Four corners are cut from a 4×8 foot sheet of wood. Find the perimeter of the remaining piece of wood.

Pythagorean The

$$
\begin{aligned}
P & =4+4+4(2 \sqrt{2}) \\
& =8+8 \sqrt{2} \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
& 2^{2}+2^{2}=x^{2} \\
& 4+4=x^{2} \\
& 8=x^{2} \\
& \sqrt{8}=x \\
& x=\sqrt{4} \sqrt{2} \\
&= 2 \sqrt{2}
\end{aligned}
$$

8ft

