MATH 1010 ~ Intermediate Algebra

Chapter 7: RADICALS AND COMPLEX NUMBERS

Section 7.2: Simplifying Radical Expressions

Objectives:

\therefore Use the Product and Quotient Rules for Radicals to simplify radical expressions.
\because Use rationalization techniques to simplify radical expressions.
\because Use the Pythagorean Theorem in application problems.

$$
\sqrt{64 x^{3}}
$$

$\sqrt[3]{(-64) x^{2} y^{5}}$
$\sqrt{648}$
$\sqrt[3]{24 x^{3} y^{5}}$
(1) EXAMPLE

Simplify these rational expressions.

$$
\begin{array}{r}
\text { a) } \begin{array}{r}
\sqrt{75}=\sqrt{25 \cdot 3}=\sqrt{25} \sqrt{3} \\
=5 \sqrt{3}
\end{array} \quad \begin{array}{l}
\sqrt{25 \cdot 3} \\
=(25 \cdot 3)^{1 / 2} \\
=25^{1 / 2} 3^{1 / 2}
\end{array}
\end{array}
$$

b) $\sqrt{162}=\sqrt{81 \cdot 2}=\sqrt{81} \sqrt{2}$

$$
=9 \sqrt{2}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { assume c) } \sqrt{72 x^{3} y^{2}}=\sqrt{36 \cdot 2 x^{2} \times y^{2}}=\sqrt{36} \sqrt{2} \sqrt{x^{2}} \sqrt{x} \sqrt{y^{2}} \\
x \geq 0, \\
y \geq 0
\end{array} \quad \begin{array}{r}
\begin{array}{r}
\sqrt{x^{3}} \\
= \\
=x^{3 / 2} \\
\\
=
\end{array} \\
\begin{aligned}
1 \frac{1}{2}
\end{aligned}=x^{1} x^{1 / 2} \\
\\
=x \sqrt{2 x} \sqrt{0.0027}
\end{array} \\
& =\sqrt{\frac{27}{19000}}=\frac{\sqrt{9.3}}{\sqrt{100^{2}}}=\frac{3 \sqrt{3}}{100} \text { or } \frac{3}{100}(\sqrt{3}) \\
& \\
& =0.03(\sqrt{3})
\end{aligned}
$$

WARNING:

$$
\begin{aligned}
& \sqrt{x^{2}}=|x| \\
& \sqrt[4]{x^{4}}=|x| \\
& \sqrt{x^{2}}=x \text {, if } x \geq 0
\end{aligned}
$$

ex $\sqrt{(-5)^{2}}=\sqrt{25}=5$

$$
\neq-5
$$

(2) $\sqrt{5^{2}}=\sqrt{25}=5$
(2) EXAMPLE

Simplify these rational expressions.
a) $\sqrt{18 x^{4}}=\sqrt{9.2 x^{4}}=3 x^{2} \sqrt{2}$
b) $\sqrt[3]{81}=\sqrt[3]{27 \cdot 3}=\sqrt[3]{27} \sqrt[3]{3}=3 \sqrt[3]{3}$
c) $\sqrt[5]{486 x^{7}}=\sqrt[5]{3^{5} \cdot 2 x^{5} x^{2}}$

$$
\begin{aligned}
& =\sqrt[5]{3^{5}} \sqrt[3]{2} \sqrt[5]{x^{5}} \sqrt[5]{x^{2}} \\
& =3 \times \sqrt[5]{2 x^{2}}
\end{aligned}
$$

d) $\sqrt{\frac{18 x^{2}}{w^{6}}}=\frac{\sqrt{9} \sqrt{2} \sqrt{x^{2}}}{\sqrt{\omega^{6}}}=\frac{3|x| \sqrt{2}}{\left|\omega^{3}\right|}$

$$
486=3^{5} \cdot 2
$$

or if $x \geq 0, \omega>0$
e) $\sqrt[5]{128 u^{4} v^{7}}$

$$
\frac{3 \times \sqrt{2}}{w^{3}}
$$

$$
\begin{aligned}
=\sqrt[5]{64 \cdot 2 u^{4} v^{7}} & =\sqrt[5]{2^{7} u^{4} v^{7}} \\
& =\sqrt[5]{2^{5}} \sqrt[5]{2^{2}} \sqrt[5]{u^{4}} \sqrt[5]{v^{5}} \sqrt[5]{v^{2}} \\
= & 2 v \sqrt[5]{4 u^{4} v^{2}}
\end{aligned}
$$

(3) EXAMPLE

Rationalize the denominator.
make the denominator have no radical sign.

TRICK:
a) $\sqrt{\frac{1}{3}}=\frac{\sqrt{1}}{\sqrt{3}}=\frac{1}{\sqrt{3}}\left(\frac{\sqrt{3}}{\sqrt{3}}\right)$
multiply by one

$$
=\frac{\sqrt{3}}{\sqrt{3^{2}}}=\frac{\sqrt{3}}{3}
$$

b) $\sqrt{\frac{4}{x^{3}}}=\frac{\sqrt{4}}{\sqrt{x^{3}}}=\frac{2}{\sqrt{x^{2} \sqrt{x}}}=\frac{2}{|x| \sqrt{x}}\left(\frac{\sqrt{x}}{\sqrt{x}}\right)$

$$
=\frac{2 \sqrt{x}}{|x||x|}=\frac{2 \sqrt{x}}{x^{2}}
$$

c) $\frac{10}{\sqrt[5]{6}}=\frac{10}{\sqrt[5]{6}}\left(\frac{\sqrt[5]{6^{4}}}{\sqrt[5]{6^{4}}}\right)=\frac{10 \sqrt[5]{6^{4}}}{\sqrt[5]{6^{5}}}=\frac{\sqrt[5]{6} \sqrt[5]{6^{4}}}{6_{3}}=\frac{5 \sqrt[5]{6^{4}}}{3}$
d) $\sqrt[3]{\frac{9}{25}}=\frac{\sqrt[3]{9}}{\sqrt[3]{5^{2}}}\left(\frac{\sqrt[3]{5}}{\sqrt[3]{5}}\right)=\frac{\sqrt[3]{45}}{\sqrt[3]{5^{3}}}=\frac{\sqrt[3]{45}}{5}$

$$
\begin{aligned}
& \text { e) } \sqrt[3]{\frac{20 x^{2}}{9 y^{4}}}=\frac{\sqrt[3]{20 x^{2}}}{\sqrt[3]{9 y^{4}}}=\frac{\sqrt[3]{20 x^{2}}}{y \sqrt[3]{3^{2} y}}\left(\frac{\sqrt[3]{3 y^{2}}}{\sqrt[3]{3 y^{2}}}\right) \\
& \begin{aligned}
\sqrt[3]{y^{4}} & =\sqrt[3]{y^{3}} \sqrt[3]{y} \\
& =y \sqrt[3]{y}
\end{aligned}=\frac{\sqrt[3]{60 x^{2} y^{2}}}{y\left(\sqrt[3]{3^{3} y^{3}}\right)} \\
& \text { f) } \frac{5}{\sqrt{8 x^{5}}} \quad=\frac{\sqrt[3]{60 x^{2} y^{2}}}{y(3 y)}=\frac{\sqrt[3]{60 x^{2} y^{2}}}{3 y^{2}} \\
& \left.\begin{array}{l}
\sqrt{8} \\
=\sqrt{4} \sqrt{2} \\
=2 \sqrt{2}
\end{array} \right\rvert\,=\frac{5}{2 x^{2} \sqrt{2 x}}\left(\frac{\sqrt{2 x}}{\sqrt{2 x}}\right) \\
& \left.\begin{array}{l}
\frac{=2 \sqrt{2}}{\sqrt{x^{5}}} \\
=\sqrt{x^{7}} \sqrt{x}
\end{array} \right\rvert\,=\frac{5 \sqrt{2 x}}{2 x^{2}(2 x)} \\
& =x^{2} \sqrt{x}=\frac{5 \sqrt{2 x}}{4 x^{3}}
\end{aligned}
$$

Pythagorean Tum
(only applies to right
 triangles)

$$
a^{2}+b^{2}=c^{2}
$$

ex $a=4, c=9, b=$?

$$
\begin{array}{r}
4^{2}+b^{2}=9^{2} \\
16+b^{2}=81 \\
b^{2}=65 \\
b=\sqrt{65}
\end{array}
$$

