MATH 1010 ~ Intermediate Algebra

Chapter 7: RADICALS AND COMPLEX NUMBERS

Section 7.1: Radicals and Rational Exponents

Objectives:

* Determine the nth roots of numbers and evaluate radical expressions.
* Use the rules of exponents to evaluate or simplify expressions with rational exponents.
* Evaluate radical functions and find the domain of radical functions.
$64^{2 / 3}$

$$
-64^{3 / 2}
$$

$(-64)^{2 / 3}$
$64^{3 / 2}$

$$
\underline{n}^{\text {th }} \text { root }
$$

The principal $n^{\text {th }}$ root of a has the same sign as a.

$$
\text { ex } \sqrt{4}=2
$$

$$
a=b^{n} \Leftrightarrow b=\sqrt[n]{a}
$$

$$
\sqrt[4]{1}=1
$$

Notation

$$
\sqrt[n]{a}=a^{1 / n}
$$

"nth root of a " equals "a to the I over n power"

$$
\begin{aligned}
&(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}=\left(a^{m}\right)^{1 / n}=a^{m / n} \\
&\left(a^{1 / n}\right)^{m} \\
& \text { ex } \quad 27^{2 / 3}=\sqrt[3]{27^{2}}=(\sqrt[3]{27})^{2}=\left(27^{2}\right)^{1 / 3} \\
& \uparrow \\
&(3)^{2}=9
\end{aligned}
$$

(1) EXAMPLE
a) $\sqrt{36}=6$
b) $-\sqrt{36}=$ -6
c) $\sqrt{-25}=$ undefined
d) $\sqrt[3]{-8}=-2$

$$
(-2 \cdot-2 \cdot-2=-8)
$$

$$
\begin{array}{ll}
\text { e) } \sqrt[3]{27}=3 & f) \sqrt[3]{-27}=-3 \\
(3 \cdot 3 \cdot 3=27) & (-3 \cdot-3 \cdot-3=-27)
\end{array}
$$

Note: recommend memorizing squares up through 12, cubes up through 6
(2) EXAMPLE
a) $8^{4 / 3}=(\sqrt[3]{8})^{4}=2^{4}=16$ or $\left(2^{3}\right)^{4 / 3}=2^{3 \cdot \frac{4}{3}}=2^{4}=16$
b) $27^{-2 / 3}=\frac{1}{27^{2 / 3}}=\frac{1}{\left(3^{3}\right)^{2 / 3}}=\frac{1}{3^{2}}=\frac{1}{9}$
c) $\left(\frac{64}{125}\right)^{2 / 3}=\left(\sqrt[3]{\frac{64}{125}}\right)^{2}=\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$
d) $(-9)^{1 / 2}=\sqrt{-9}$
e) $-9^{1 / 2}=-\sqrt{9}$
undefined

$$
\begin{aligned}
& =-(3) \\
& =-3
\end{aligned}
$$

(3) EXAMPLE

Rewrite these with rational exponents.
a) $x \sqrt[4]{x^{3}}=x \sqrt[4]{x^{3}}=x^{1} x^{3 / 4}=x^{1+\frac{3}{3}}=x^{7 / 4}$
b) $\left.\begin{aligned} \frac{\sqrt[3]{x^{4}}}{\sqrt{x^{5}}}=\frac{x^{4 / 3}}{x^{5 / 2}}=x^{\frac{4}{3}-\frac{5}{2}} \\ =x^{-7 / 6}\end{aligned} \right\rvert\, \begin{aligned} & \frac{4}{3}-\frac{5}{2} \\ & = \\ & \\ & \\ & \\ & =-7 / 6\end{aligned}$
c) $\sqrt{\sqrt[3]{x}}=\sqrt{x^{1 / 3}}=\left(x^{1 / 3}\right)^{1 / 2}$

$$
=x^{\frac{1}{3}\left(\frac{1}{2}\right)}=x^{1 / 6}
$$

(4) EXAMPLE

Simplify this.

$$
\begin{aligned}
\frac{(3 x-2)^{5 / 3}}{\sqrt[3]{3 x-2}}=\frac{(3 x-2)^{5 / 3}}{(3 x-2)^{1 / 3}} & =(3 x-2)^{5 / 3-1 / 3} \\
& =(3 x-2)^{4 / 3}
\end{aligned}
$$

(5) EXAMPLE
restrictions: can't take even root of negative \#
Determine the domain.
a) $f(x)=\sqrt{x}$
b) $f(x)=\sqrt{x^{4}}$
domain: $x \geq 0$
x^{4} is always nonnegative $\sqrt{x^{4}}$ then is always domain: $x \in \mathbb{R}^{\text {okay }}$
c) $g(x)=\sqrt[3]{x}$
d) $g(x)=\sqrt{x^{3}}$
domain: $x \in \mathbb{R}$
note: x^{3} can be negative force: $x^{3} \geq 0$
domain: $x \geq 0$

