MATH 1010 ~ Intermediate Algebra

Chapter 6: RATIONAL EXPRESSIONS, EQUATIONS AND FUNCTIONS

Section 6.4: Complex Fractions

Objectives:

* Simplify complex fractions using rules for dividing rational expressions.
* Simplify complex fractions having a sum or difference in the numerator and/or denominator.

$$
\begin{aligned}
& \frac{\frac{3 / 2}{4 x+1}}{4+\frac{16}{x-4}} \\
& \frac{\frac{x+4}{\frac{x+3}{x-2}}}{5+\frac{20}{x-4}}
\end{aligned}
$$

Simplify these:

$$
\text { a) } \begin{aligned}
\frac{\left(\frac{3 u^{2}}{6 v^{3}}\right)}{\left(\frac{u}{3 v}\right)} & =\frac{3 u^{2}}{6 v^{3}} \div \frac{u}{3 v} \quad v \neq 0, u \neq 0 \\
& =\frac{3 u^{2}}{6 v^{32}} \cdot \frac{3 x}{4} \\
& =\frac{3 u}{2 v^{2}}, u \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \frac{\left(\frac{x}{x-4}\right)}{\left(\frac{x}{4}\right)}=\frac{x}{x-4} \div \frac{x}{4-x} \quad x \neq 0,4 \\
& =\frac{x}{x-4} \cdot \frac{4-x}{x} \int \quad \begin{aligned}
4-x & =-x+4 \\
& =-(x-4)
\end{aligned} \\
& =\frac{x(-1)(x-4)}{(x-4) x}=-1, x \neq 0,4 \\
& \left(\frac{\frac{x}{x-4}}{\frac{x}{4-x}}\right)=\left(\frac{\frac{x}{(x-4)}}{\frac{-x}{(x-4)}}\right)\left(\frac{\frac{(x-4)}{1}}{\frac{(x-4)}{1}}\right) \quad \text { LCD }=x-4 \\
& =\frac{\frac{x(x-4)}{(x-4)}}{\frac{-x(x-4)}{(x-4)}}=\frac{x}{-x}=-1, x \neq 0,4
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } \frac{\left(\frac{x^{2}-2 x-8}{x-1}\right)}{5 x-20}=\frac{\frac{(x-4)(x+2)}{x-1}}{5(x-4)} \\
& =\frac{(x-4)(x+2)}{(x-1)} \div(s(x-4)) \\
& =\frac{(x-4)(x+2)}{(x-1)} \cdot \frac{1}{5(x-4)} \\
& =\frac{x+2}{5(x-1)}, x \neq 4
\end{aligned}
$$

g) $\frac{3 x^{-2}-x}{4 x^{-1}+6 x}=\left(\frac{\frac{3}{x^{2}}-x}{\frac{4}{x}+6 x}\right)\left(\frac{\frac{x^{2}}{1}}{\frac{x^{2}}{1}}\right) \quad \begin{aligned} & L\left(D=x^{2}\right. \\ & x \neq 0 \\ & \frac{y}{x}+6 x \neq 0 \\ & 4+6 x^{*} \neq 0\end{aligned}$ $=\frac{\frac{3 x^{2}}{x^{2}}-x\left(x^{2}\right)}{\frac{4 x^{2}}{x}+6 x\left(x^{2}\right)}=\frac{3-x^{3}}{4 x+6 x^{3}}=\frac{3-x^{3}}{2 x\left(2+3 x^{2}\right)}$
h) $\frac{x-y}{x^{-2}-y^{-2}}=\frac{x-y}{\frac{1}{x^{2}}-\frac{1}{y^{2}}}$

$$
\begin{aligned}
& =\frac{(x-y)}{\frac{y^{2}-x^{2}}{x^{2} y^{2}}} \\
& =(x-y)
\end{aligned} \div\left(\frac{y^{2}-x^{2}}{x^{2} y^{2}}\right)=(x-y) \cdot\left(\frac{x^{2} y^{2}}{y^{2}-x^{2}}\right) \quad\left(\begin{array}{l|l}
(y-x) x^{2} y^{2} \\
& =\frac{(y+x)}{y-x=-(x-y)} \\
& =\frac{(x-y) x^{2} y^{2}}{-(x y)(y+x)} \\
\text { we } & =\frac{-x^{2} y^{2}}{y+x}, x \neq 0, y \neq 0, x \neq-y
\end{array}\right.
$$

still have

$$
x=-y
$$

$$
\begin{aligned}
& \text { LCD }=x^{2} y^{2} \\
& x \neq 0, y \neq 0 \\
& \frac{1}{x^{2}}-\frac{1}{y^{2}} \neq 0 \\
& \Rightarrow x \neq \pm y
\end{aligned}
$$

