Chapter 6: RATIONAL EXPRESSIONS, EQUATIONS AND FUNCTIONS

Section 6.1: Rational expressions and functions

Objectives:

Find the domain of a rational function. Evaluate a rational function. Simplify rational expressions.

$9 x-2$
 $3 x+1$

$$
\frac{3-2 x^{2}}{5 x^{2}}
$$

Vocabulary
A Rational Function: a function that is a fraction $w /$ polynomial numerator $\dot{\xi}$ denominator

Domain $f(x)=\frac{h(x)}{g(x)}$
bile inputs
(all x values)
(1) Example

Find the domain for these. (we cant divide by zen)
a) $f(x)=\frac{3}{x-1}$
b) $g(x)=\frac{4 x-2}{6} \quad$ (polynomial)
domain: $x \neq 1$,

$$
=\frac{4 x}{6}-\frac{2}{6}
$$

$$
\begin{array}{r}
x \in \mathbb{R} \\
(-\infty, 1) \cup(1, \infty)
\end{array}
$$

domain: $x \in \mathbb{R}$
c) $y=\frac{3 x-2}{(x-3)(x+2)}$
d) $h(x)=\underbrace{\frac{9 x-2}{4 x^{2}+1}}$
domain: $x \in \mathbb{R}, x \neq 3,-2$ domain: $x \in \mathbb{R}$

$$
\begin{array}{rc}
(x-3)(x+2) \neq 0 \\
x-3 \neq 0 & \{x+2 \neq 0 \\
x \neq 3 & x \neq-2
\end{array}
$$

(2) EXAMPLE

Evaluate these.
a) $f(-2)$ when $f(x)=\frac{x^{2}-3 x}{x-4}$
$f(-2)=\frac{(-2)^{2}-3(-2)}{-2-4}=\frac{4+6}{-6}=\frac{10}{-6}=\frac{5}{-3}$
b) $g(1)$ when $g(x)=\frac{x-3}{2 x+1}$
$g(1)=\frac{1-3}{2(1)+1}=\frac{-2}{2+1}=\frac{-2}{3}$
(3) EXAMPLE

Simplify these.

$$
2 \cdot-12=-24 \times \begin{array}{|c|c|}
\hline 2 x^{2} & 3 \\
\hline 2 x^{2} & 3 x \\
\hline-8 x & -12
\end{array}
$$

a) $\frac{2 x^{3}-3 x}{6 x^{2}}$

$$
\begin{aligned}
& =\frac{x\left(2 x^{2}-3\right)}{6 x^{2}} \\
& =\frac{2 x^{2}-3}{6 x}
\end{aligned}
$$

b) $\frac{2 x^{2}-5 x-12}{-3 x+12}$

$$
\begin{aligned}
& =\frac{(2 x+3)(x-4)}{-3(x-4)} \\
& =\frac{2 x+3}{-3}, x \neq 4
\end{aligned}
$$

c) $\frac{x^{2}-16}{x^{2}-2 x-8}$
d) $\frac{2 x^{2}+2 x y-4 y^{2}}{5 x^{3}-5 x y^{2}}$

$$
\begin{aligned}
& =\frac{(x-4)(x+4)}{(x+2)(x-4)} \\
& =\frac{x+4}{x+2}, x \neq 4
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2\left(x^{2}+x y-2 y^{2}\right)}{5 x\left(x^{2}-y^{2}\right)} \\
& =\frac{2(x+2 y)(x-y)}{5 x(x-y)(x+y)} \\
& =\frac{2(x+2 y)}{5 x(x+y)}, x+y
\end{aligned}
$$

