MATH 1010 ~ Intermediate Algebra

Chapter 5: POLYNOMIALS AND FACTORING

Section 5.6: Solving Polynomial Equations by Factoring
Objectives:

* Use the zero-factor property to solve equations.
* Solve quadratic equations by factoring.
* Solve higher-degree polynomial equations by factoring.
* Solve application problems by factoring.

$$
x^{3}-4 x=2 x^{2}-8
$$

Solving Polynomial Equations by Factoring
If 2 (or more)
Zero-Factor Property things multiply to git zee, one of
if $a b=0$, then $a=0$ or $b=0$. them must be zero.
a)

$$
\begin{aligned}
& 2 x^{2}-9 x-5=0 \\
& \begin{array}{c}
2 x+1)(x-5)=0 \\
2 x+1=0 \quad \text { or } x-5=0 \\
2 x=-1 \\
x=-1 / 2
\end{array}
\end{aligned}
$$

b) $4 x^{3}-32 x^{2}+64 x=0$

$$
\begin{gathered}
4 x\left(x^{2}-8 x+16\right)=0 \\
4 x(x-4)(x-4)=0 \\
4 x=0 \text { or } x-4=0
\end{gathered}
$$

c)

$$
\begin{aligned}
& \text { c) } \underbrace{x^{3}-3 x^{2}}-4 x+12=0 \\
& \left(x^{3}-3 x^{2}\right)-(4 x-12)=0 \\
& x^{2}(x-3)-4(x-3)=0 \\
& (x-3)\left(x^{2}-4\right)=0 \\
& (x-3)(x-2)(x+2)=0 \\
& x-3=0 \text { or } x-2=0 \text { or } x+2=0 \\
& x=3 \quad x=2 \quad x=-2
\end{aligned}
$$

(1) EXAMPLE:

Solve for x .

$$
\begin{gathered}
2 \cdot-12=-24 \\
-8,3 x_{x}-4
\end{gathered}
$$

$$
\begin{gathered}
2 x^{2}-3 x=2 x+12 \\
-2 x-12-2 x-12 \\
2 x^{2}-5 x-12=0 \\
(2 x+3)(x-4)=0 \\
2 x+3=0 \quad \text { or } \quad x-4=0 \\
\begin{array}{c}
2 x=-3 \\
x=-3 / 2
\end{array} \quad x=4
\end{gathered}
$$

$$
\begin{array}{|c|c|c|}
\hline 2 x & 2 x^{2} & -8 x \\
\hline 3 x & -12 \\
\hline & \\
\hline
\end{array}
$$

$$
\text { b) } \begin{gathered}
x^{2}+8 x+16=0 \\
(x+4)(x+4)=0 \\
(x+4)^{2}=0 \\
x+4=0 \\
x=-4
\end{gathered}
$$

$$
\text { c) } \begin{array}{r}
(x-6)(x+4)=-9 \\
x^{2}+4 x-6 x-24=-9 \\
+9+9 \\
x^{2}-2 x-15=0 \\
(x-5)(x+3)=0 \\
x-5=0 \quad \text { or } x+3=0 \\
x=5 \quad x=-3
\end{array}
$$

(2) EXAMPLE:

Solve for x.
a)

$$
\begin{aligned}
& 4 x^{2}(3 x-1)=9(3 x-1) \\
& -9(3 x-1)-9(3 x-1) \\
& 4 x^{2}(3 x-1)-9(3 x-1)=0 \\
& (3 x-1)\left(4 x^{2}-9\right)=0 \\
& (3 x-1)(2 x-3)(2 x+3)=0
\end{aligned} \quad \begin{aligned}
& 3 x+1=0) \text { or } \\
& 3 x=1 \\
& 2 x-3=0 \\
& 2 x=3 \\
& x=3 / 2 \\
& 2 x+3=0 \\
& 2 x=-3 \\
& \hline
\end{aligned}
$$

b)

$$
\begin{aligned}
& x^{3}+18 x^{2}=-45 x \\
& +45 x+45 x \\
& x^{3}+18 x^{2}+45 x=0 \\
& x\left(x^{2}+18 x+45\right)=0 \\
& x(x+3)(x+15)=0 \\
& x=0 \text { or } \quad x+3=0 \text { or } x+15=0 \\
& x=-3 \quad x=-15
\end{aligned}
$$

Applications:
a) The height of a triangle is 2 inches less than its base. The area of the triangle is 60 square inches. Find the base and height of the triangle.

height
10 m
b) A penny is dropped from the roof of a building 256 feet above the ground. The height (h) in feet of the penny after t seconds is modeled by the equation $h=-16 t^{2}+256$.
How long does it take to hit the ground? $t=$? when

$-16 \neq 0$

$$
\begin{aligned}
& h=-16 t^{2}+256 \\
& 0=-16 t^{2}+256 \\
& 0=-16\left(t^{2}-16\right) \\
& 0=-16(t-4)(t+4) \\
&-16 \\
& 0=(t-4)(t+4) \\
& t-4=0 \quad \text { or } \quad t+4=0 \\
& t=4 \text { sec } \quad t-4
\end{aligned}
$$

$$
h=0
$$

