MATH 1010 ~ Intermediate Algebra

Chapter 5: POLYNOMIALS AND
FACTORING

Section 5.4: Factoring by Grouping and Special Forms

Objectives:
\downarrow Factor the greatest common monomial factors from polynomials.

- Factor polynomials by grouping.
- Factor the difference of two squares.
- Factor the sum and difference of two cubes.
- Factor polynomials completely.

$$
\begin{gathered}
a^{3}-b^{3}=? \\
x^{2}+2 x y+y^{2}=? \\
a^{2}+b^{2}=?
\end{gathered}
$$

GCF: Greatest Common Factor
the largest number (or expression) that goes into all the given terms Find the GCF.
a) $5 x^{4}, \quad 20 x^{3}, \quad 15 x^{5}$
(5) $\left.x^{3}\right) \times(5) 4 x^{3} x^{5}\left(x^{3} x^{2}\right.$

$$
G C F=5 x^{3}
$$

(1) EXAMPLE:

Factor out the greatest common factor.
a) $24 x^{3}-32 x^{2}=8 x^{2}(3 x-4)$
(distributive property "backwards")
b) $4 x^{2}(3 x-1)-6(3 x-1)$

$$
\begin{aligned}
& =(3 x-1)\left(4 x^{2}-6\right) \\
& =(3 x-1)(2)\left(2 x^{2}-3\right) \text { or } 2(3 x-1)\left(2 x^{2}-3\right)
\end{aligned}
$$

c) $x^{3}-5 x^{2}+x-5$
grouping

$$
\begin{aligned}
& =x^{2}(x-5)+1(x-5) \\
& =(x-5)\left(x^{2}+1\right)
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
& (3 x+7)(2 x-1)+(x-6)(2 x-1) \\
= & (2 x-1)((3 x+7)+(x-6)) \\
= & (2 x-1)(3 x+7+x-6) \\
= & (2 x-1)(4 x+1)
\end{aligned}
$$

Difference of squares

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

(2) EXAMPLE

Factor these

$$
\begin{aligned}
(a-b)(a+b) & =a^{2}+2 b-a b-b^{2} \\
& =a^{2}-b^{2}
\end{aligned}
$$

a) $9 x^{2}-25$

$$
\begin{aligned}
= & (3 x)^{2}-5^{2}=(3 x-5)(3 x+5) \\
& a=3 x, 5=b
\end{aligned}
$$

b) $a^{2}-\frac{1}{16}=a^{2}-\left(\frac{1}{4}\right)^{2}=\left(a-\frac{1}{4}\right)\left(a+\frac{1}{4}\right)$

$$
\text { or }\left(a+\frac{1}{4}\right)\left(a-\frac{1}{4}\right)
$$

$$
\begin{aligned}
& \text { c) }(x+3)^{2}-49 \\
& a<x+3 \\
& =(x+3)^{2}-7^{2} \\
& b=7 \mid=(x+3+7)(x+3-7) \\
& =(x+10)(x-4)
\end{aligned}
$$

Sum and Difference of Cubes

$$
\begin{aligned}
& \frac{u^{3}+v^{3}=(u+v)\left(u^{2}-u v+v^{2}\right)}{\left(\text { check: } u^{3}-v^{2} v+u v^{2}+u^{2} v-u x^{2}+v^{3}=u^{3}+v^{3}\right)} \\
& u^{3}-v^{3}=(u-v)\left(u^{2}+u v+v^{2}\right)
\end{aligned}
$$

(3) Example

Factor these.

$$
\begin{aligned}
& \text { a) } \left.x^{3}-64 \quad \begin{array}{l}
u=x \\
v=4
\end{array}\right) \\
& =x^{3}-y^{3} \quad \\
& =(x-4)\left(x^{2}+4 x+4^{2}\right) \\
& =(x-4)\left(x^{2}+4 x+16\right)
\end{aligned}
$$

c) $3 x^{4}+81 x$

$$
\begin{aligned}
& =3 x\left(x^{3}+27\right) \\
& =3 x\left(x^{3}+3^{3}\right) \\
& =3 x(x+3)\left(x^{2}-3 x+9\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } 8 w^{3}+27 \\
&=(2 w)^{3}+3^{3} \left\lvert\, \begin{array}{l}
u=2 w \\
v=3
\end{array}\right. \\
&=(2 w+3)\left((2 w)^{2}-3(2 w)+3^{2}\right) \\
&=(2 w+3)\left(4 w^{2}-6 w+9\right)
\end{aligned}
$$

d) $2 a^{3}-32 a$

$$
=2 a\left(a^{2}-16\right)
$$

$$
=2 a\left(a^{2}-4^{2}\right)
$$

$$
=2 a(a-4)(a+4)
$$

What about the sum of two squares?

$$
x^{2}+y^{2} \quad \frac{\text { never }}{\text { factors }}
$$

idea 1: $(x+y)^{2}=x^{2}+y^{2}$? \quad ex $x^{2}+25$
check: $(x+y)^{2}=(x+y)(x+y)$

$$
=x^{2}+x y+x y+y^{2}
$$

