Chapter 5: POLYNOMIALS AND FACTORING

Section 5.3: Multiplying Polynomials

Objectives:

* Use the Distributive Property to multiply polynomials.
* Use special product formulas to multiply two binomials.
* Use multiplication of polynomials in application problems.
$(2 x-3)(3 x+2)=$

$$
(2-3 x)^{2}=
$$

$(x+1)\left(2 x^{2}-3 x+4\right)=$

How do we multiply polynomials?
Distribute

$$
\text { a) } \begin{aligned}
& 3 x(-2 x+7) \\
= & 3 x(-2 x)+3 x(7) \\
= & -6 x^{2}+21 x
\end{aligned}
$$

$$
a(b+c)=a b+a c
$$

mu H. distributes through addition/ subtraction
b)

$$
\begin{aligned}
& \left.4 x^{2}-7\right)\left(3 x^{2}+2 x+1\right) \\
= & 12 x^{4}+8 x^{3}+4 x^{2}-21 x^{2}-14 x-7 \\
= & 12 x^{4}+8 x^{3}-17 x^{2}-14 x-7
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& (x-2)(3 x+4) \\
= & 3 x^{2}+4 x-6 x-8 \\
= & 3 x^{2}-2 x-8
\end{aligned}
$$

Look for a pattern.
a) $(x-2)(x+2)$

$$
\begin{aligned}
& =x^{2}+2 x-2 x-4 \\
& =x^{2}-4
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& (3 x-5)(3 x+5) \\
= & 9 x^{2}+15 x-15 x-25 \\
= & 9 x^{2}-25
\end{aligned}
$$

$$
\begin{aligned}
& (a-b)(a+b) \\
= & a^{2}+a b-a b-b^{2} \\
= & a^{2}-b^{2} \\
& \text { Difference of } \\
& \text { Squares }
\end{aligned}
$$

Look for a pattern.

$$
\text { a) } \begin{aligned}
& (4 x+7)^{2} \\
= & (4 x+7)(4 x+7) \\
= & 16 x^{2}+28 x+28 x+49 \\
= & 16 x^{2}+56 x+49
\end{aligned}
$$

(WARNING:

$$
=(4 x)^{2}+7^{2}
$$

$$
=16 x^{2}+49
$$

exponents do
NOT distribute through addition/. subtraction
b)

$$
\begin{aligned}
& (2 x-3)^{2} \\
= & (2 x-3)(2 x-3) \\
= & 4 x^{2}-6 x-6 x+9 \\
= & 4 x^{2}-12 x+9
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =(a+b)^{2} \\
= & a^{2}+a b+a b \\
& =a^{2}+b^{2} \\
& (-a b)+b^{2}
\end{aligned}
$$

Multiply these.
a)

$$
\begin{aligned}
& (\underline{w}+(y+1))(w-(y+1) \\
= & w^{2}-w(y+1)+(y+1) w-(y+1)^{2} \\
= & \left.w^{2}-w\right) y-\not x+y / y+y-(y+1)(y+1) \\
= & w^{2}-\left(y^{2}+y+y+1\right) \\
= & w^{2}-y^{2}-2 y-1
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& (a+b)^{3} \stackrel{?}{=} a^{3}+b^{3} \quad N O \\
= & (a+b)(a+b)(a+b) \\
= & \left(a^{2}+a b+a b+b^{2}\right)(a+b) \\
= & \left(a^{2}+2 a b+b^{2}\right)(a+b) \\
= & a^{3}+a^{2} b+2 a^{2} b+2 a b^{2}+b^{2} a+b^{3} \\
= & a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{aligned}
$$

Application

Write an expression in terms of x for the perimeter and area of the shaded region.

Determine the value of each if $x=4 c m$.
$P=$ distance around shape

Area $=A_{\text {big }}-A_{\text {small }}$

$$
\begin{aligned}
& =P_{\text {big }}+P_{\text {share }} \\
& =2(5 x-2)+2(x+6)+2(3 x) \\
& \quad+2(x-1) \\
& =10 x-4+2 x+12+6 x+2 x-2
\end{aligned}
$$

$$
A=2\left(4^{2}\right)+31(4)-12
$$

$$
=32+124-12
$$

$$
=20+124
$$

$$
=144 \mathrm{~cm}^{2}
$$

