$(2-3x)^2 =$

MATH 1010 ~ Intermediate Algebra

Chapter 5: POLYNOMIALS AND FACTORING

Section 5.3: Multiplying Polynomials

Objectives:

- * Use the Distributive Property to multiply polynomials.
- * Use special product formulas to multiply two binomials.
- * Use multiplication of polynomials in application problems.

$$(2x - 3)(3x + 2) =$$

$$(2-3x)^2 =$$

$$(x+1) (2x^2-3x+4) =$$

How do we multiply polynomials?

a)
$$3x(-2x+7)$$

= $3x(-2x) + 3x(7)$
= $-(6x^2 + 2)x$

<u>Pistribute</u>

a(b+c)=ab+ac

mu H. distributes

through addition/

subtraction

b)
$$(4x^2 - 7)(3x^2 + 2x + 1)$$

= $12x^4 + 8x^3 + 4x^2 - 21x^2 - 14x - 7$
= $12x^4 + 8x^3 - 17x^2 - 14x - 7$

c)
$$(x-2)(3x+4)$$

= $3x^2 + 4x - 6x - 8$
= $3x^2 - 2x - 8$

Look for a pattern.

a)
$$(x-2)(x+2)$$

= $x^2+2x-2x-4$
= x^2-4

b)
$$(3x-5)(3x+5)$$

= $9x^2 + 15x - 15x - 25$
= $9x^2 - 25$

Look for a pattern.

a)
$$(4x+7)^2$$

= $(4x+7)(4x+7)$
= $16x^2+28x+28x+49$
= $16x^2+56x+49$

(4x+7)²
= (4x)²+7²
= 16x²+49
exponents do
NOT distribute
through addition/

b)
$$(2x-3)^2$$

= $(2x-3)^2$
= $(2x-3)^2$

Multiply these.

a)
$$(w + (y+1))(w - (y+1))$$

 $= w^{2} - w(y+1) + (y+1)w - (y+1)^{2}$
 $= w^{2} - wy - w + wy + w - (y+1)(y+1)$
 $= w^{2} - (y^{2} + y + y + 1)$
 $= w^{2} - (y^{2} - 2y - 1)$

b)
$$(a+b)^3 \stackrel{?}{=} a^3 + b^3$$
 NO
= $(a+b)(a+b)(a+b)$
= $(a^2 + ab + ab + b^2)(a+b)$
= $(a^2 + 2ab + b^2)(a+b)$
= $a^3 + a^2b + 2a^2b + 2ab^2 + b^2a + b^3$
= $a^3 + 3a^2b + 3ab^2 + b^3$

Application

Write an expression in terms of x for the perimeter and area of the shaded region.

