MATH 1010 ~ Intermediate Algebra

Chapter 5: POLYNOMIALS AND FACTORING

Section 5.2: Adding and Subtracting Polynomials Objectives:

粦 Identify leading coefficients and degrees of polynomials.

* Add and subtract polynomials using vertical and horizontal format.
* Use polynomials to model and solve real life problems.
$5 x^{3}-2 x^{2}+3 x+6$

Definition of a polynomial

$$
\begin{aligned}
\text { ex } 3 x^{4}-5 x^{2}+2 x & +1 \\
a_{4}=3 \quad n & =4 \\
+\ldots+a_{2} x^{2}+a_{1} x+a_{0} & a_{3}
\end{aligned}=0
$$

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0} \quad a_{3}=0
$$

Vocabulary
Degree $=n$ highest exponent (degree or power) on variable
Leading coeficione $=a_{n}$ coefficient of highest degree term
Conssanterm $=a_{0}$ the "plain" number

Standard form
descending order
State whether these are monomial, binomial or trinomial. State degree, leading coefficient and constant.
a) $3-x^{2}=-x^{2}+3$ binomial
$l_{\text {c. }}=-1$, de gree $=2$
constant $=3$

Are these polynomials? Why?
b) $4 x^{3}$
monomial degree $=3$ l. $c=4$
constants $0 \quad$ lc. $=1$
constant $=-2$
c) $x^{3}+5 x-2$ trinomial degree $=3$

$$
\text { lc. } c=1
$$

a) $x^{-2}+7 x-2$

$$
=\frac{1}{x^{2}}+7 x-2
$$

No because
b) $\frac{1}{2(x)}-x+1$

NOT polynomial dividing by x^{2}
c) $\frac{2}{3} x^{3}-2 x$

IS polynomial degree $=3$

$$
\begin{aligned}
& l . c=2 / 3 \\
& \text { constant }=0
\end{aligned}
$$

(1) EXAMPLE

Combine like terms and put in standard form.

$$
\text { a) } \begin{aligned}
& \left(2 x^{4}+3 x^{2}-x^{2}+5 x+7\right)+\left(3 x^{2}-x+1\right) \\
= & 2 x^{4}+3 x^{2}-\not x^{2}+5 x+7+3 x^{2 x} x+1 \\
= & 2 x^{4}+5 x^{2}+4 x+8
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& \left(6 t-4 t^{3}-t^{2}+3\right)-\left(3 t^{2}-50\right) \\
= & 6 t-4 t^{3}-t^{2}+9-3 t^{2}+50 \\
= & -4 t^{3}-4 t^{2}+6 t+53
\end{aligned}
$$

C) $\left(15-2 y+y^{2}\right)+\left(3 y^{2}-6 y+1\right)-\left(4 y^{2}-8 y+16\right)$

$$
\begin{aligned}
& =15-2 y+y^{2}+3 y^{2}-4 y+1-4 y^{2}+8 y-16 \\
& =0 \\
& \text { degree: } 0 \\
& \text { constant: } 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \begin{array}{l}
\left(x^{2 m}-6 x^{m}+4\right)-\left(2 x^{2 m}-4 x^{m}-3\right) \\
\left.=x^{2 m}-6 x^{m}-4\right)-2 x^{2 m}+4 x^{m}+3 \\
=-x^{2 m}-2 x^{m}+7
\end{array}
\end{aligned}
$$

degree: $2 \mathrm{~m} \quad$ const $=7$

$$
\text { lc. }=-1
$$

Application

Find an expression in terms of x for the perimeter and for the area of this figure. Evaluate each if $x=6 \mathrm{ft}$.
$P=$ distance around shape

$$
\begin{aligned}
P= & 5+4 x \\
& +3+x+2 \\
& +3 x
\end{aligned}
$$

Area $=$ space inside shape

$$
\begin{gathered}
A=15 x+3 x \\
A=18 x \mathrm{ft}^{2}
\end{gathered}
$$

If $x=6 \mathrm{ft}$,

$$
\begin{aligned}
& P=8(6)+10=48+10=58 \mathrm{ft} . \\
& A=18(6)=108 \mathrm{ft}^{2}
\end{aligned}
$$

