MATH 1010 ~ Intermediate Algebra

Chapter 5: POLYNOMIALS AND FACTORING

Section 5.1: Integer Exponents and Scientific Notation

Objectives:

Use the rules of exponents to simplify expressions.

* Rewrite exponential expressions involving negative exponents.
* Write very large and very small numbers in scientific notation.
$? \quad 4-2 \quad\left(\frac{3}{4}\right)^{-1}$

Review of the rules of exponents

1) $a^{m} a^{n}=a^{m+n}$
$2^{3} 2^{4}=2 \cdot 2 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 2=2^{7}$
2) $(a / b)^{m}=\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
3) $a^{m} \div a^{n}=a^{m-n}$
4) $a^{0}=1, a \neq 0$
5) $\left(a^{m}\right)^{n}=a^{m n}$
6) $a^{-m}=\frac{1}{a^{m}}$
$\left(2^{2}\right)^{3}=2^{2} \cdot 2^{2} \cdot 2^{2}=2^{6}$
7) $(a b)^{m}=a^{n} b^{n}$
8) $(a / b)^{-m}=(b / a)^{m}$

$$
\begin{aligned}
& a^{0}=? \\
& 10^{3}=1000 \\
& 10^{2}=100 \quad 2 \div 10 \\
& 10^{1}=10 \quad 2 \div 10 \\
& 10^{0}=1 \quad 2 \div 10 \\
& 10^{-1}=\frac{1}{10} \quad 2 \div 10 \\
& 10^{-2}=\frac{1}{10^{2}} \quad 2 \div 10 \\
& 10^{-3}=\frac{1}{10^{3}}
\end{aligned}
$$

$$
3^{3}=27
$$

$$
\begin{aligned}
& 3=27 \\
& 3^{2}=9 \quad 2 \div 3
\end{aligned}
$$

$$
3^{\prime}=3 \quad 2 \div 3
$$

$$
3^{\circ}=1 \quad 2 \div 3
$$

what about 0^{0} ?

$$
\begin{array}{ll}
0^{3}=0 & 3^{0}=1 \\
0^{2}=0 & 2^{0}=1 \\
0^{\prime}=0 & t^{0}=1 \\
0^{0}=0 ? & 0^{0}=1 ?
\end{array}
$$

0° unde fined

Use the rules to simplify these:
a) $3^{2} x^{2} \cdot x^{3}=9 x^{5}$
b) $(3 x)^{2} \cdot x^{5}=3^{2} x^{2} x^{5}=9 x^{7}$

$$
\begin{aligned}
& \text { c) }-\left(a^{3} b^{2}\right)^{2}\left(-a b^{3}\right)=-\left(a^{4} b^{4}\right)\left(-a b^{3}\right) \\
& =a^{6} b^{4} a^{1} b^{3} \\
& =a^{6} a^{1} b^{4} b^{3} \\
& =a^{7} b^{7} \text { or }(a b)^{7}
\end{aligned}
$$

e) $\frac{-1}{6^{-2}}=\frac{-1}{1 / 6^{2}}=-1 \div \frac{1}{6^{2}}=-1 \cdot \frac{6^{2}}{1}=-6^{2}=-36$
f) $\left(-4(-1)^{1}\right)^{-2}=\left(\frac{-1}{4}\right)^{-2}=\left(\frac{-4}{1}\right)^{2} \approx\left(\frac{4}{-1}\right)^{2}$

$$
=16
$$

$$
\begin{array}{rlrl}
\text { g) } & \left(4^{0}-3^{-2}\right)^{-1}=\left(1-\frac{1}{3^{2}}\right)^{-1} & \begin{array}{l}
\text { Qn: } \\
= \\
\text { subbraction } \\
\end{array} & \left(1^{-1}-\left(\frac{1}{3^{2}}\right)^{-1}\right) \\
& =\left(1-\frac{1}{9}\right)^{-1} & \text { No } \\
& =\left(\frac{8}{9}\right)^{-1}=\frac{9}{8} & & =
\end{array}
$$

h) $\left(32+4^{-3}\right)^{0}=(\underbrace{32+\frac{1}{\varphi^{3}}}_{\neq 0})^{0}=1$
$\begin{aligned} \text { i) }\left(\frac{5^{2} x^{3} y^{-3}}{125 x y}\right)^{-1}=\frac{125 x y}{25 x^{3} y^{-3}}=\frac{5 x y y^{3}}{x^{2}} & =\frac{5 y^{4}}{x^{2}} \\ x^{2} & \text { or } 5 x^{-2} y^{4}\end{aligned}$
j) $\left[\left(2 x^{-3} y^{-2}\right)^{2}\right]^{-2}=\left(\left(\frac{2}{x^{3} y^{2}}\right)^{2}\right)^{-2}=\left(\frac{2}{x^{3} y^{2}}\right)^{-4}$

$$
=\left(\frac{x^{3} y^{2}}{2}\right)^{4}=\frac{x^{12} y^{8}}{2^{4}}
$$

k) $\frac{u^{-1}-v^{-1}}{u^{-1}+v^{-1}}=\left(\frac{\frac{1}{u}-\frac{1}{v}}{\frac{1}{u}+\frac{1}{v}}\right) \frac{\frac{u v}{1}}{\frac{u v}{1}}$ $=\frac{x^{12} y^{8}}{16}$

$$
\frac{\frac{u v}{u}-\frac{u v}{\Delta}}{\frac{u v}{Z h}+\frac{u V}{x}}=\frac{v-u}{v+u}
$$

Scientific Notation

Put into scientific notation:

$$
\frac{a}{b \text { power on }} \times \frac{10^{b}}{10} \quad 1.0 \text { and } 9 \text {. Something } \quad 1 \leq a<10
$$

a) $\underbrace{000000000328}$
b) $1,248,000,000$ 3.28×10^{-10}

$$
1.248 \times 10^{9}
$$

Put in standard notation:
a) 3.1×10^{8}
b) 2.3×10^{-5}

0.000023
$310,000,000$

