Section 4.1: SYSTEMS OF EQUATIONS

Objectives:

\ddagger Determine if ordered pairs are solutions of systems of equations.
\ddagger Solve systems of equations graphically
\uparrow Solve systems of equations by substitution.
*Use systems of equations to model and solve real life problems.

$$
\begin{aligned}
& x+y=3 \\
& x-y=-2
\end{aligned}
$$

Vocabulary:
system of equations: a collection of eqns; typically 1 we null have the same of egus as variables

for a system of egos, the solution is the pt. of intersection
point of intersection

Three methods to solve a system of equations:

1. Graphing: graph both curves on same axes (least used) and find the pl. of intersection 2. Substitution: use one of the egos to solve for one variable; substitute that into the
other equ.
2. Elimination
(1) EXAMPLE:

Solve each system by graphing
a) $10 x-y=3$
(2) $2 x+3 y=7$
(1)

$$
\begin{aligned}
& x=y+3 \\
& y=x-3
\end{aligned}
$$

(2)

$$
\begin{aligned}
3 y & =-2 x+7 \\
y & =\frac{-2}{3} x+\frac{7}{3}
\end{aligned}
$$

b) $2 x+y=3$
(2) $2 y=-4 x+8$
(1) $y=-2 x+3$
(2) $y=-2 x+4$
N.S.

(2) EXAMPLE

Solve by substitution
(1) $x+y=3$
(2) $\frac{2 y}{2}$
(1) $2 x+5 y=15$
(2) $y=-2 / 5 x$

$$
\text { (1) } 2 x+8\left(\frac{-2}{8} x\right)=15
$$

$$
2 x+-2 x=15
$$

\Rightarrow N.S. (no soln)

$$
0 \neq 15
$$

(parallel lines)

$$
\begin{aligned}
& \begin{array}{l}
x+y=3 \\
\frac{2 y}{2}=\frac{2 x+6}{2}
\end{array} \oiiint^{2} y=x+3 \Rightarrow(1) x+(x+3)=3 \\
& 2 x+3=3 \\
& \text { (2) } y=0+3 \\
& \text { Soln: }(0,3) \\
& \frac{2 x}{2}=\frac{0}{2} \\
& x=0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left.\begin{array}{l}
a(Q y=2 x+1 \\
\text { (2) } 3 x+2 y=16
\end{array}\right)^{\text {(2) }} 3 x+2(2 x+1)=16
\end{array} \\
& 3 x+4 x+2=16 \\
& \text { (1) } y=2(2)+1 \\
& =4+1 \\
& 7 x+2=16 \\
& =5 \\
& -2 \quad-2 \\
& 7 x=14 \\
& x=2
\end{aligned}
$$

a) 10 y $x-y=5$$\longrightarrow$ (1) $x=5+y$
(2) $2 x=2 y+10$ \rightarrow (2)

$$
2(5+y)=2 y+10
$$

\Rightarrow same line

$$
\begin{aligned}
& 10+2 y= 2 y+10 \\
&-10 \\
&-10 \\
& 2 y=2 y \\
&-2 y-2 y \\
& 0=0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { b(2) } \begin{array}{l}
y=-3 / 2 x+4 \\
3 x+2 y=3
\end{array} \text { (2) } 3 x+2\left(\frac{-3}{2} x+4\right)=3
\end{array} \\
& 3 x+-3 x+8=3 \\
& \Rightarrow \text { N.S. } \\
& 8 \neq 3
\end{aligned}
$$

(4) EXAMPLE:

Set up a set of equations and solve these problems.
a) $\mathbb{Q}_{\text {The }}$ sum of two numbers is 160 .
(2) The larger number is three times the smaller number.
$x=1^{\text {st }}$ number, $y=2^{\text {nd }}$ number (larger)
(1) $x+y=160 \quad$ (2) $y=3 x$
(1)

$$
\begin{gathered}
x+3 x=160 \\
4 x=160
\end{gathered}
$$

(2) $\begin{aligned} y & =3(40) \\ & 120\end{aligned}$
b) The perimeter of a rectangle is 90 meters.

The length is $11 / 2$ times the width.
Find the dimensions of the rectangle.

$$
\begin{gather*}
P=2 b+2 h=90 \tag{1}\\
b=\frac{3}{2} h \tag{2}
\end{gather*}
$$

(1) $2\left(\frac{3}{2} h\right)+2 h=90$

$$
\begin{aligned}
& b=27 \mathrm{~m} \\
& h=18 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
3 h+2 h & =90 \\
\frac{5 h}{5} & =\frac{90}{5} \\
h & =18
\end{aligned}
$$

c) Ten pounds of a nut mixture sells for $\$ 6.95$ per pound. The mixture is made from two kinds of nuts; peanuts at $\$ 5.65$ per pound and cashews at $\$ 8.95$ per pound.

How many pounds of each will be used

| rate $\% / 6 b$ | \#lbs | | |
| :---: | :---: | :---: | :---: | :---: |
| P | 5.65 | x | $5.65 x$ |
| c | 8.95 | y | $8.95 y$ |
| | | | |
| mix | 6.95 | 10 | $695(10)$ |

(1)

$$
\begin{aligned}
x & \simeq 10-3.94 \\
& =\begin{array}{c}
6.06 \mathrm{lbs} \\
\text { peanuts }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) } x+y=10 \Leftrightarrow x=10-y \\
& \text { (2) } 5.65 x+8.95 y=6.95(10) \\
& \text { (2) } 5.65(10-y)+8.95 y=69.5 \\
& 56.5-5.65 y+8.95 y=19.5
\end{aligned}
$$

$$
\begin{gathered}
56.5+3.30 y=69.5 \\
-56.5 \\
-56.5
\end{gathered}
$$

$$
-56.5 \quad-56.5
$$

$$
(10) 3.3 y=13(10)
$$

$$
33 y=130
$$

$$
y=\begin{gathered}
3.94 \mathrm{lbs} \\
\text { cashews }
\end{gathered}
$$

