MATH 1010 ~ Intermediate Algebra

Section 3.7: Graphs of Functions

Objectives:

* Sketch the graph of a function on a rectangular coordinate system.
* Identify the graphs of basic functions.
* Use the Vertical Line Test to determine if a graph is a function.
* Use the vertical and horizontal shifts and reflections to sketch the graphs of functions.

We have already seen graphs of several basic functions.

$$
\begin{aligned}
& \text { Absolute value } \\
& y=|x|
\end{aligned}
$$

$$
\begin{aligned}
& \text { Parabola } \\
& y=x^{2}
\end{aligned}
$$

Square root
$y=\sqrt{x}$

The Vertical line test states that a graph is a function if any vertical line only goes through at most one point on the graph.

$$
\begin{aligned}
& \text { (because fo has exactly one output for } \\
& \text { every input) }
\end{aligned}
$$

Examples: Function or not?

Transformations of Graphs vertical \Rightarrow outside the f_{n} $\underset{\text { Vertical shits: }}{h_{\text {rizal }}} \Rightarrow$ in side the $_{\text {Horizontal shifts: }} f_{n}$

$$
y=x^{2}+3 \quad y=(x-3)^{2}
$$

base graph
add/subtract a \# outside the fun

add/subtract a \# inside the for shift right 3

$$
y=(x-1)^{2}-2
$$

Reflection across the x-axis:
vertical frflection
multiplied by -1
outside

base $y=\sqrt{x}$$\quad$| Reflection across the y-axis: |
| :--- |
| horizontal reflection |
| mu |

(1) EXAMPLE:

Sketch the graph. State the domain and range.
a) $f(x)=x^{2}-3$
base graph: $y=x^{2}$ shift down 3
 domain: $x \in \mathbb{R}$
range: $y \geq-3$
b) $f(x)=(x-4)^{2}$
base graph $y=x^{2}$

hoiz. shift right 4
domain: $x \in \mathbb{R}$
range: $y \geq 0$
c) $f(x)=-\sqrt{(x+3)}$
base graph: $y=\sqrt{x}$

horiz. shift left 3 domain: $x+3 \geq 0$ vert. reflection
d) $g(x)=-|x+2|-1$
base graph $y=|x|$
vert. reflection horiz. shift left 2 vert. shift down I domain: $x \in \mathbb{R}$

range: $y \leq-1$
e) $h(x)=\left\{\begin{array}{l}2-x^{2} \frac{i f x \leq 1}{i f} \\ x-2 \underbrace{i n}_{i x>1}\end{array}\right.$

$$
h(x)=\left\{-x^{2}+2 \quad x \leqslant 1\right.
$$

(2) $(x-2 \quad x>1$
(1) $y=-x^{2}+2$
base: $y=x^{2}$
vert. reflection vert. shift up 2

(2)
domain:

