MATH 1010 ~ Intermediate Algebra
Chapter 2: LINEAR EQUATIONS AND INEQUALITIES

Section 2.3: Business and Scientific Problems

Objectives:

* Use mathematical models to solve business-related problems.
* Use mathematical models to solve mixture problems.
* Use mathematical models to solve rate problems.

It takes me 3 hours to perform a task; It takes my friend 5 hours. If we work together, how long should it take?

RATES IN BUSINESS
(1) EXAMPLE:

Simple Interest:
(\#86) Find the annual interest rate on a CD that earned $\$ 400$ interest in 2 years on a principal of $\$ 2500$.

$$
\begin{aligned}
& A=P(1+r) \quad \text { or } I=\operatorname{Prt} \quad t=\text { time }(y / s) \\
& A=\text { ant after time } I=\text { interest (\$) } \\
& P=\text { principal (initial } \quad I=\$ 400 \\
& \text { investment) } r=\text { ? } \\
& r=\text { interest rate (\%) } \quad P=2500 \\
& t=\operatorname{tine}=2 \mathrm{yrs} \\
& I=\operatorname{Pr} t \\
& 400=2500(r)(2) \\
& \frac{400}{5000}=\frac{5000 r}{5000} \\
& \frac{4}{50\left(\frac{2}{2}\right)}=r \\
& 8 \%=0.08=\frac{8}{100}=r
\end{aligned}
$$

(2) EXAMPLE:
(\#32) An appliance store charges $\$ 50$ for the first $1 / 2$ hour of a call and $\$ 18$ for each additional $1 / 2$ hour of labor. Find the length of service call if you were charged $\$ 104$.
$x=$ length of service call (half $\left(\begin{array}{l}\text { aft }) \text {) } y=\text { length of } \\ \text { after lis half }\end{array}\right.$
(1)

$$
\begin{aligned}
& \begin{array}{l}
104=50+18 x \\
-50=50
\end{array} \\
& \frac{54}{18}=\frac{18 x}{18} \\
& 3=x \\
& \begin{array}{l}
104=50+36 y \\
-30=50
\end{array} \\
& \frac{54}{36}=\frac{36 y}{36} \\
& 3\left(\frac{1}{2}\right)=\frac{3}{2}=1.5 \mathrm{hrs} \\
& 1\left(\frac{1}{2} h r\right)+3\left(\frac{1}{2} h r\right) \\
& \text { (hos }=\frac{3}{2}=y \\
& =4\left(\frac{1}{2} h r\right)=2 \text { hus total }
\end{aligned}
$$

(3) EXAMPLE:

A department store sells a beach towel for $\$ 14.00$. On sale, the towel is $\$ 10.00$. What is the discount rate?

$$
\begin{aligned}
& \frac{4}{} \text { is } x \% \text { of } \$ 14 \\
& \frac{4}{14}=\frac{14 x}{14} \quad x \approx 0.2857 \approx 28.5 \% \\
& \frac{2}{7}=x
\end{aligned}
$$

MIXTURE PROBLEMS
(4) EXAMPLE:

A grocer mixes two kinds of nuts costing $\$ 3.88$ per pound and $\$ 4.88$ per pound to make 100 pounds of a mixture costing $\$ 4.13$ per pound. How many pounds of each kind of nut are in the mixture?

DISTANCE PROBLEMS
(6) EXAMPLE:

$$
\begin{aligned}
d & =r t \\
(m i) & =\frac{m i}{h r} \cdot h_{r}
\end{aligned}
$$

$d=$ distance $r=$ rate (speed)
$t=$ time

You ride your bike at an average speed of $8 \mathrm{mi} / \mathrm{hr}$. How long will it take you to ride 12 miles?

$$
r=8 \mathrm{mi/hr} \quad \begin{aligned}
& t=? \\
& \\
& d=12 \mathrm{mi}
\end{aligned}
$$

$$
\begin{array}{r}
12=8 t \\
\frac{12}{8}=t \\
1.5=\frac{3}{2}=t \\
1.5 \mathrm{hrs}
\end{array}
$$

WORK-RATE PROBLEMS
(7) EXAMPLE:

I can complete a typing task in 4 hours. My daughter can do the task in 7 hours. How long will it take us if we work together?
$t=$ time it takes to complete job together $28 t\left(\frac{1}{4}+\frac{1}{7}\right)=\left(\frac{1}{t}\right) 28 t$

$$
\begin{aligned}
& \begin{array}{l}
\text { ant of } \\
\text { job I do }+\begin{array}{l}
\text { ant job }
\end{array}=a_{n-1} \text { of } \\
\text { job done }
\end{array} \\
& \begin{array}{c}
\text { in } \left\lvert\, h_{r} \begin{array}{c}
\text { daughter } \\
\text { does in } \\
\text { i hr }
\end{array} \quad\right. \text { together } \\
\text { in } 1 h_{r}
\end{array} \\
& 28 t\left(\frac{1}{4}\right)+28 t\left(\frac{1}{7}\right)=\frac{28 t}{t} \\
& 7 t+4 t=28 \\
& 11 t=28 \\
& \begin{aligned}
t=28 \mathrm{hr} & =2 \overline{54} \mathrm{hr} \\
& \simeq 2.5 \mathrm{hr}
\end{aligned}
\end{aligned}
$$

SOLVING FOR A VARIABLE IN A FORMULA

Solve for c in this formula.

$$
\begin{gathered}
s=C+r C \\
\frac{s}{1+r}=\frac{C(1+r)}{(1+r)} \\
\frac{s}{1+r}=c
\end{gathered}
$$

