
State Math Contest – Junior Exam

SOLUTIONS



1. The following pictures show two views of a non standard die (however the numbers 1 - 6 are repre-
sented on the die). How many dots are on the bottom face of figure 2?

•

•

•
•

•

•

1

••

••
•

•• ••

•

2

a) 6 b) 2 c) 3

d) 4 e) 5

Solution:

Correct answer: 2 (b)
Rotate picture 1 90 degrees clockwise (so the 1 is on the right as it is in
picture 2). Then imagine rotating the resulting cube 90 degrees forward
so the 2 and 3 are now on the bottom and rear face respectively. It’s
the only way to make them both disappear so we can see the 4 and 5 as
we do in image 2.

2. Two bicyclists, Annie and Bonnie, are 30 miles apart on a steep road. Annie and Bonnie travel at
a constant speed and start riding towards each other at the same time. Annie travels downhill and
goes twice as fast as Bonnie. They expect to meet in one hour, but Annie stops for a flat tire after 30
minutes and she is unable to continue. How many minutes should Annie expect to wait for Bonnie
if Bonnie continues at the same speed?

a) 45 b) 60 c) 75

d) 90 e) 105

Solution:

Correct answer: 90 (d)
If they expect to meet in 1 hour, then together they must travel the
total distance of 30 miles in one hour or 30 mph. So Annie must travel
at 20 mph and Bonnie must travel at 10 mph. After 30 minutes Annie
has traveled 10 miles and Bonnie has traveled 5 miles so the distance
between them is 15 miles. At 10 mph it will take Bonnie 1 1/2 hours or
90 minutes to travel 15 miles.



3. A certain museum holds many priceless works of art. The floor plan of the museum is shown below.
What is the minimum number of security guards required, if guards must stay in one place, and
every location in the museum must be visible to at least one of the guards?

a) 2 b) 3 c) 4

d) 5 e) 6

Solution:

Correct answer: 3 (b)
Guards who are watching the top alcove and the bottom alcove will not
be able to see the wall opposite the middle alcove. So more than two
guards are needed. If three guards stand in front of the three alcoves,
all of the locations can be observed.

×

×

×

4. Find the product of all real solutions to the equation x4 + 2x2 − 35 = 0.

a) 5 b) −5 c) 7

d) −7 e) −35

Solution:

Correct answer: −5 (b)

x4 + 2x2 − 35 = (x2 − 5)(x2 + 7) = 0. If x2 − 5 = 0, x = ±
√

5. If
x2 + 7 = 0, there are no real solutions. The product of the real solutions
is −5.



5. The number of real solutions of
1

x− 1
+

2

x− 2
= 1 is

a) 0 b) 1 c) 2

d) 3 e) None

Solution:

Correct answer: 2 (c)

Multiplying the equation by (x− 1)(x− 2) gives x2 − 6x+ 6 = 0.
The discriminant for this quadratic equation is positive so there are two
real solutions.

6. Traveling from Salt Lake City to Denver, a regularly priced adult ticket is discounted by 15% for
seniors and 50% for children. Tickets for a party of 3 seniors, 5 adults, and 7 children cost $884.
How much will it cost in dollars for 2 seniors, 6 adults, and 8 children?

a) 884 b) 856 c) 868

d) 936 e) 976

Solution:

Correct answer: 936 (d)
Let x be the cost in dollars for an adult fare. Then the fare for a senior

in dollars is .85x =
17x

20
and the fare for a child in dollars is .5x =

x

2
.

For a party of 3 seniors, 5 adults, and 7 children the cost in dollars is

3 · 17x

20
+ 5x+ 7 · x

2
= 884. Multiplying both sides by 20 and simplifying

yields 51x+100x+70x = 221x = 20·884 = 20·4·221. So x = 20·4 = 80.
The fare for a senior is 0.85 · $80 = $68. The adult fare is $80 and the
child fare is 0.5 · $80 = $40. The cost in dollars for 2 seniors, 6 adults,
and 8 children is 2 · 68 + 6 · 80 + 8 · 40 = 136 + 480 + 320 = 936.

7.
(1/2)4 + (1/16)0 − 64−1/2 − (−32)−4/5 =

a) -367/16 b) -127/16 c) -1/8

d) 7/8 e) 129/16

Solution:

Correct answer: 7/8 (d)
1

16
+ 1− 1

8
− 1

16
=

7

8
.



8. The large triangle below is divided into two triangles of areas α and β. Find α/β.

a)
3

5
b)

1

2
c)

4

6

d)
3

4
e)

7

11

Solution:

Correct answer:
3

5
(a)

Over bases 3 and 5, the two triangles have the same altitude.

9. Let

f(x) =

{
2x for 0 ≤ x ≤ 0.5
2(1− x) for 0.5 < x ≤ 1.

If x0 =
6

7
and xn = f(xn−1) for n ≥ 1, find x100.

a)
2

7
b)

4

7
c)

6

7

d)
10

7
e)

96

7

Solution:

Correct answer:
2

7
(a)

x0 = 6/7, x1 = 2/7, x2 = 4/7, x3 = 6/7, x4 = 2/7, x5 = 4/7.
The sequence repeats every three terms.
x100 = x97 = · · · = x1 = 2/7.

10. When 3x12 − x3 + 5 is divided by x+ 1 the remainder is:

a) 1 b) 3 c) 5

d) 7 e) 9

Solution:

Correct answer: 9 (e)
By the Remainder Theorem, the answer is the polynomial evaluated at
x = -1.

3(−1)12 − (−1)3 + 5 = 3 + 1 + 5 = 9.



11. A factor of 243, 000, 000 is chosen at random. What is the probability that the factor is a multiple
of 9?

a)
1

3, 000
b) 0 c)

1

6

d)
1

3
e)

2

3

Solution:

Correct answer:
2

3
(e)

243, 000, 000 = 263556. A factor of 243, 000, 000 is the form 3n ·K, where
n = 0, 1, 2, 3, 4, or 5 and K is not divisible by 3. The factor is a multiple

of 9 exactly when n = 2, 3, 4, or 5. The probability of this is
4

6
=

2

3
.

12. How many different kinds of pieces can you cut from an 8×8 checkered board consisting of four 1×1
squares that are joined end to end?

Note: Two pieces are the same if one of the pieces can be rotated or translated in the plane to
obtain the other piece.

a) 10 b) 12 c) 20

d) 8 e) 16

Solution:

Correct Ans: 10 (a)



13. High schools in Utah are divided into different classifications, with the largest schools classified as
5A and the next largest schools classified as 4A.

If the smallest 5A school is reclassified as 4A, what will happen to the average size of schools in the
two classifications?

a) The average 4A size will go down, and the average 5A size will go up.

b) The average 4A size will go up, and the average 5A size will go up.

c) The average 4A size will go down, and the average 5A size will go down.

d) The average 4A size will go up, and the average 5A size will go down.

e) None of the above is always true.

Solution:

Both averages will go up. (b)

14. How many ways can you write 5 as the sum of one or more positive integers if different orders are
not counted differently? For example, there are three ways to write 3 in this way: 1 + 1 + 1, 1 + 2,
and 3.

a) 7 b) 6 c) 8

d) 5 e) 10

Solution:

Correct answer: 7 (a)
5,
4 + 1,
3 + 2,
3 + 1 + 1,
2 + 2 + 1,
2 +1 + 1 + 1,
1 + 1 + 1 +1 + 1.

15. How many real solutions does the equation x3/2 − 32x1/2 = 0 have?

a) 0 b) 1 c) 2

d) 3 e) 4

Solution:

Correct answer: 2 (c)

Let y = x1/2 =
√
x. the original equation becomes y3 − 32y = 0 or

y(y2 − 32) = 0. Thus y = 0 or y = ±
√

32 = ±4
√

2. If y =
√
x = 0, then

x = 0. If y =
√
x =

√
32, then x = 32. There is no real value of x for

which y =
√
x = −

√
32, since for x real

√
x ≥ 0. So there are two real

solutions to the equation.



16. When slicing a rectangular cake, what is the smallest number of straight cuts that you need to make
exactly 7 pieces?

a) 7 b) 6 c) 5

d) 4 e) 3

Solution:

Correct answer: 3 (e)
One straight cut gives two pieces. A second straight cut gives 1 or 2
additional pieces depending on whether the second cut crosses the first
cut. The third straight cut gives 1, 2, or 3 additional pieces depending on
whether it crosses previous cuts and misses the intersection of previous
cuts. So it is possible to get 7 pieces with three straight cuts as long as
the second cut meets the first cut, and the third cut meets the previous
two cuts in distinct points.

17. A very thin disk has an area (on one side) of 4π. A square window is cut into a wall. What is the
smallest area (the lower bound) the window can have and still be large enough for the disk to fit
through?

a) 16/π b) 4π c) 8
√

2

d) 8 e) 16

Solution:

Correct answer: 8 (e)
If the disk is put in sideways through the diagonal. The disk has radius
2, so a diameter has length 4. A square with diagonal of length 4 has
sides of length 2

√
2, and area 8.

18. How many whole numbers from 1 to 10000, inclusive, are multiples of 20 but not of 22?

a) 489 b) 478 c) 455

d) 458 e) 432

Solution:

Correct answer: 455 (c)
There are 500 multiples of 20, But 45 of them are simultaneously mul-
tiples of 11.



19. The graph of the function h(x) is a straight line. On the interval 2 ≤ x ≤ 4 the function h(x) satisfies
h(x) = 3 + |x− 4|+ 2|x− 6|. What is h(7)?

a) −5 b) −2 c) 0

d) 3 e) 19

Solution:

Correct answer: -2 (b)
h(x) = −3x+ 19 on [2, 4].

20. Find the sum of all the fractions strictly between 0 and 1 which, in reduced form, have denominator
less than or equal to 10.

a)
21

6
b)

43

4
c) 25

d)
43

2
e)

31

2

Solution:

Correct answer:
31

2
(e)

For denominators 2,3,4,5,6,7,8,9,10 respectively, the sums are
1

2
,

1,1,2,1,3,2,3,2 respectively.

21. We use a base 10 number system. For example,

245 = 2(102) + 4(101) + 5(100).

Suppose we work instead in a base 5 system. Then

4312 = 4(53) + 3(52) + 1(51) + 2(50).

If the expression 1303− 422 is considered in base 5, what is its value?

a) 341 b) 881 c) 331

d) 12006 e) 431

Solution:

Correct answer: 331 (c)

1303−422 would be 1(53)+3(52)+0(51)+3(50)−(4(52)+2(51)+2(50))
If we rewrite so that subtractions of like terms will work,

7(52) + 5(51) + 3(50) − (4(52) + 2(51) + 2(50)) = 3(52) + 3(51) + 1(50).
In base 5 this would be 331.



22. Let ε = 10−25 = .0000000000000000000000001, and let x =
√

1 + 2ε, y = 3
√

1 + 3ε and z = 1 + ε.
Rank the numbers x, y and z. If any of them are equal, say so.

a) y > x > z b) x < y < z c) x = y = z

d) y < x < z e) x = y > z

Solution:

Correct answer: y < x < z (d)
By squaring z, one can see it is greater than x. By taking x and y to
the sixth power (for example) one can see that x > y.

23. How many of the following triples can be the side lengths of an obtuse triangle?

(2, 2, 3), (3, 5, 7), (3, 7, 11), (7, 9, 11)

a) 0 b) 1 c) 2

d) 3 e) 4

Solution:

Correct answer: 2 (c)
For a triangle to exist, the length of the longest side must be less than the
sum of the lengths of the other two sides. If (a, b, c) gives the side lengths
of a triangle, the Pythagorean Theorem says that the angle between the
sides of length a and b is a right angle if and only if c2 = a2 + b2. If
c2 < a2 + b2, then the angle between the sides of length a and b is an
acute angle. If c2 > a2 + b2, then the angle between the sides of length
a and b is an obtuse angle. The first two triples give the side lengths of
obtuse triangles. The third triple does not give the side lengths of any
triangle. The last triple gives the side lengths for an acute triangle.

24. Seven students in a classroom are to be divided into two groups of two and one group of three. In
how many ways can this be done?

a) 3 b) 35 c) 90

d) 105 e) 315

Solution:

Correct answer: 105 (d)

If the group of three is chosen first, this can be done

(
7
3

)
= 35 ways.

The remaining 4 students can be divided into pairs 3 different ways. So
there are 35 · 3 = 105 ways.



25. If |r| < 1, then (a)2 + (ar)2 + (ar2)2 + (ar3)2 + · · · =

a)
a2

(1− r)2
b)

a2

1 + r2
c)

a2

1− r2

d)
4a2

1 + r2
e) none of these

Solution:

Correct answer:
a2

1− r2
(c)

This is a geometric series with first term a2 and ratio r2. The sum of
an infinite geometric series with ratio of absolute value less than 1 is the

first term divided by one minus the ratio; i.e.,
a2

1− r2
.

26. Consider the set of colors {white, black, red, orange, yellow, green, blue, purple }. We define the
operation of addition (+) on this set of colors such that if two colors from the set are added together,
we obtain another (not necessarily distinct) color in the set. For example, the following rules are
always satisfied.

blue + red = purple
blue + yellow = green
yellow + red = orange

red + blue + yellow = white

In addition if black is added to another color, we obtain that color, while if a color is added to itself
we obtain black. If this addition is commutative and associative, fill in the blank such that

yellow + green + = purple

is a true statement.

a) Green b) Red c) Black

d) Blue e) Purple

Solution:

Correct answer: Red (b)
yellow + green = yellow + yellow + blue
= black + blue = blue
We know red + blue = purple.



27. When buying a bike from the Math Bikes company, there are three extra options to choose (a bell,
a rear fender, and a basket), each of which you can choose to add to the bike or choose not to add
it. If Math Bikes has sold 300 bikes, what is the largest number of bikes that you can guarantee to
have exactly the same extras as each other?

a) 8 b) 37 c) 38

d) 43 e) 292

Solution:

Correct answer: 38 (c)

There are 23 = 8 possible bike types. Now 300÷ 8 = 37.5. If there were
37 or less of each type of bike, then there would be less than 300 bikes.
So there must be at least 38 bikes that have exactly the same extras.

28. A square and an equilateral triangle have the same area. Let A be the area of the circle circumscribed

around the square and B be the area of the circle circumscribed around the triangle. Find
A

B
.

a)
3
√

3

8
b)

3
√

3

6
c)

3
√

3

4

d)
3

8
e)

3

4

Solution:

Correct answer:
3
√

3

8
(a)

The A be the common area. Let e be the edge length of the square,

then A = e2. Let s be the side length of the triangle, then A =
s2
√

3

4
.

The center of the square is the point where the two diagonals meet. The
radius r of the circle circumscribed around the square is the distance

from the center of the square to the four vertices which is
e√
2

.

The circumcenter of the triangle is the point where the perpendicular
bisectors meet which, in this case, is the same as the centroid or the point
where the medians meet. The centroid lies on the medians two-thirds
the distance from the vertex to the midpoint of the opposite side. The

length of a median is
s
√

3

2
. So the radius R of the circle circumscribed

about the triangle is
2

3
· s
√

3

2
=

s√
3

A

B
=

πr2

πR2
=

r2

R2
=
e2

2
÷ s2

3
=
A
2
÷ 4A

3
√

3
=

3
√

3

8
.



29. Find the number of diagonals that can be drawn in a convex polygon with 200 sides.

Note: A diagonal of a polygon is any line segment between non-adjacent vertices.

a) 1,969 b) 1,970 c) 20,000

d) 19,700 e) 19,699

Solution:

Correct answer: 19,700 (c)
Each vertex has 197 diagonals, but each diagonal gets counted twice.
200 · 197/2 = 100 · 197 = 19, 700.

30. Koch’s curve is created by starting with a line segment of length one. Call this stage 1.

Stage 1

To get from one stage to the next we divide each line segment into thirds and replace the middle
third by two line segments of the same length.

Stage 2

Stage 3

Notice that at Stage 2 there are three bends in Koch’s curve. How many bends are there at Stage 6?

a) 999 b) 1023 c) 1024

d) 1025 e) 1031

Solution:

Correct answer: 1023 (b)
Stage 1 has 1 line segment and 0 bends. Stage 2 has 4 line segments and
3 bends. In general Stage n+ 1 has four times as many line segments as
Stage n. Stage 6 has 45 = 210 = 1, 024 line segments and 1,023 bends.



31. For a certain baseball team the probability of winning any game is P , (the probability of winning a
particular game is independent of any other games). What is the probability the team wins 3 out of
5 games?

a) 10P 2(1− P )3 b) 10P 3(1− P )2 c) 5P 3(1− P )2

d) 5P 2(1− P )3 e) P 3(1− P )2

Solution:

Correct answer: 10P 3(1− P )2 (b)

The number of possible outcomes from playing 5 games is 25. There are
5 choose 3 or 10 ways of winning 3 games and losing 2; e.g. winning
the first three and losing the last two, winning the first two and fourth
game and losing the other two, etc. Each of these ways of winning 3 and
losing 2 games has probability P 3(1 − P )2. So the total probability of
winning 3 games and losing 2 is 10P 3(1− P )2.

32. If x is the fraction of numbers between 1 and 1,000, inclusive, which contain 4 as a digit, and y is
the fraction of numbers between 1 and 10,000, inclusive which contain 4 as a digit, what is x/y?

a) 2/3 b) 3/4 c) 27/34

d) 271/3439 e) 2710/3439

Solution:

Correct answer: 2710/3439 (e)
We can count how many numbers in {1, 2, . . . 1, 000} contain 4 as a digit
using the inclusion exclusion principle: If one digit is a 4, there are 102

possiblities for the other three digits, and we can do this allowing the 4 to
be in the ones, the tens, and the hundreds digit, but we’ve overcounted.
We need to subtract off the number of ways to get two 4’s. But then
we’ve undercounted, and we need to add back the number of ways to
get three 4’s:

3 · (100)− 3 · (10) + 1 = 271.

So, x = 271/1, 000. We calculate y similarly: there are

4 · (1, 000)− 6(100) + 4(10)− 1 = 3439

numbers in {1, 2, . . . , 10, 000} containing 4 as a digit, so y =
3439/10, 000. Thus,

x

y
=

271
1,000
3439
10,000

=
2710

3439
.



33. Given that the area of the outer circle is ten square units, find the area of any one of the three equal
circles which are tangent to each other and to the outer circle, and inscribed inside the circle of ten
square units.

a) 30(7− 4
√

3) square units. b) 2.5 square units.

c)
10

(3 +
√

2)
square units. d)

3
√

10 square units.

e) 2 square units.

Solution:

Correct answer: 30(7− 4
√

3) square units (a)
The radius of the outer circle is R = r+ r csc(π/3) where r is the radius
of an inner circle.

34. Let f(x) = 9x2 + dx + 4. For certain values of d, the equation f(x) = 0 has only one solution. For
such a value of d, which value of x could be a solution to f(x) = 0?

a)
2

3
b) 1 c)

4

3

d) 3 e) 12

Solution:

Correct answer:
2

3
(a)

Using the quadratic equation gives d = ±12 as the only values for one
real solution.



35. The natives of Wee-jee Islands rate 2 spears as worth 3 fishhooks and a knife, and will give 25
coconuts for 3 spears, 2 knives, and a fishhook together. Assuming each item is worth a whole
number of coconuts, how many coconuts will the natives give for each article separately?

a)

Item Worth in Coconuts

fishhook 1
knife 3
spear 3

b)

Item Worth in Coconuts

fishhook 2
knife 2
spear 4

c)

Item Worth in Coconuts

fishhook 1
knife 5
spear 4

d)

Item Worth in Coconuts

fishhook 3
knife 3
spear 6

e)

Item Worth in Coconuts

fishhook 2
knife 4
spear 5

Solution:

Correct Ans: (e)
Let S, F, and K be the value of a spear, knife and fishhook in coconuts.
Then

2S = 3F +K

and
25 = 3S + 2K + F.

Multiply the second equation above by 2 and the first equation by 3 to
find

50 = 6S + 4K + 2F

6S = 9F + 3K.

Substituting the second equation into the first gives:

50 = 11F + 7K.

We know that F and K are nonnegative integers. If F ≥ 5 then 11F +
7K ≥ 55, hence F = 0, 1, 2, 3, or 4. We try each of these four cases, and
only F = 2, K = 4 works, and in this case S = 5.



36. An octagon in the plane is symmetric about the x-axis, the y-axis, and the line whose equations is
y = x. If (1,

√
3) is a vertex of the octagon, find its area.

a) 6
√

3 b) 11 c) 6 + 2
√

3

d) 2 + 6
√

3 e) 4 + 4
√

3

Solution:

Correct answer: 4 + 4
√

3 (e)

The vertices of the octagon are (±1,±
√

3) and (±
√

3,±1). The area
can be computed by computing the area of the enclosing square that is
2
√

3× 2
√

3 and subtracting the area of the four right isosceles triangles
or, equivalently, the area of two squares that are

√
3 − 1 ×

√
3 − 1.

The area is (2
√

3)2 − 2(
√

3 − 1)2 = 12 − 2(4 − 2
√

3) = 4 + 4
√

3.

x

y

1 2

1

2

(
√

3, 1)

(1,
√

3)

37. Five points are placed in a square with side length 1. What is the largest distance d so that every
pair of points is at least d apart from each other?

a) 1 b)
√

2 c)
√

3/2

d) 1/2 e)
√

2/2

Solution:

Answer:
√

2/2 (e)
If we divide the square into 4 equal squares each of side length 1/2. Now
place the 5 points among these 4 squares. One square must have two
points. The farthest distance of these two points could be is

√
2/2.



38. A square number is an integer number which is the square of another integer.
Positive square numbers satisfy the following properties:

• The units digit of a square number can only be 0, 1, 4, 5, 6, or 9.

• The digital root of a square number can only be 1, 4, 7, or 9.
The digital root is found by adding the digits of the number. If you get more then one digit you
add the digits of the new number. Continue this until you get to a single digit. This digit is the
digital root.

One of the following numbers is a square. Which one is it?

a) 4, 751, 006, 864, 295, 101

b) 3, 669, 517, 136, 205, 224

c) 2, 512, 339, 789, 576, 516

d) 1, 898, 732, 825, 398, 318

e) 5, 901, 643, 220, 186, 107

Solution:

Correct Ans: 2, 512, 339, 789, 576, 516 (c)
(d), and (e) are ruled out because of the first property.
(a) and (b) are ruled out because their digit roots are 5 and 8.
(c) has a digit root of 7 thus it is the square number.

39. A regular octahedron is formed by setting its vertices at the centers of the faces of the cube. Another
regular octahedron is formed around the cube by making the center of each triangle of the octahedron
hit at a vertex of the cube. What is the ratio of the volume of the larger octahedron to that of the
smaller octahedron?

a) 2
√

2 b) 27/8 c) 3
√

3

d) 8 e) 27

Solution:

Correct answer: 27 (e)
If the cube is centered at the origin with x,y,z three dimensional coordi-
nates, then the vertices of the cube can be at (±a,±a,±a). The vertices
of the smaller octahedron are (±a, 0, 0), (0,±a, 0), (0, 0,±a). The ver-
tices of the larger octahedron are (±3a, 0, 0), (0,±3a, 0), (0, 0,±3a) since
the centroid of the triangle with vertices (3a, 0, 0), (0, 3a, 0), (0, 0, 3a) is
(a, a, a). Since the larger octahedron is similar to the smaller by a scale
factor of 3, the volume is 33 = 27 times as large.



40. In 4ABC, AC = 13, BC = 15 and the area of 4ABC = 84. If CD = 7, CE = 13, and the area of

4CDE can be represented as
p

q
where p and q are relatively prime positive integers, find q.

a) 3 b) 5 c) 7

d) 11 e) 13

A B

C

D

E

Solution:

Correct answer: 5 (b)

The area of 4ABC is
1

2
· AC · BC · sinC =

1

2
· 13 · 15 · sinC = 84.

The area of 4CDE is
1

2
· CD · CE · sinC =

1

2
· 7 · 13 · sinC. Let

[ABC] be the area of 4ABC and [CDE] be the area of 4CDE. Then
[CDE]

[ABC]
=

7 · 13

13 · 15
=

7

15
. So [CDE] =

7

15
[ABC] =

7

15
84 =

7 · 28

5
=

196

5
.

END OF EXAM


