State Math Contest 2015- Junior Exam Solutions

1. Find the slope of the line containing the two points $(2,-4)$ and $(5,3)$.
a) $\frac{7}{3}$
b) $\frac{3}{7}$
c) $\frac{-3}{7}$
d) $\frac{-7}{3}$
e) $\frac{4}{3}$

Solution: $\frac{3-(-4)}{5-2}=\frac{7}{3}$.
The answer is a.
2. Given a point P inside of a square, the distances from P to the sides of the square are $1,3,7$, and 9. Find the area of the square.
a) 66
b) 100
c) $100 \sqrt{2}$
d) 144
e) 189

Solution: The height h and width w of the square must be the sum of two of the numbers 1, 3, 7, 9. So $h+w=1+3+7+9=20$. For a square the height and width are the same. So $2 h=2 w=h+w=20$. So the square has dimensions 10×10 and its area is 100 .
The answer is \mathbf{b}.
3. Compute $2015+2015-2015 \times|-2015| \div(-2015)$.
a) 0
b) 2014
c) 2015
d) 4030
e) 6045

Solution: It might be easier to translate the problem into $x+x-x \cdot \frac{|x|}{-x}$ where $x=2015$. Since $x>0,|-x|=x$, and we get $x+x-x \cdot \frac{x}{-x}=x+x+x=3 x$. For $x=2015,3 x=6045$.
The answer is \mathbf{e}.
4. In the following figure, what is the value of $\frac{x+y+z}{15}$?

a) 5
b) 8
c) 9
d) 10
e) 12

Solution: $x+y+z=180$, and $180 / 15=12$
The answer is \mathbf{e}.
5. In the following rectangular prism, $\mathrm{AE}=3, \mathrm{DE}=5$, and $\mathrm{CD}=4$. What is the area of the shaded rectangular region?

a) 9
b) $3 \sqrt{41}$
c) 25
d) $5 \sqrt{2}$
e) $4 \sqrt{34}$

Solution: First, find the length of the diagonal $E C$. If x is this length, then

$$
x^{2}=5^{2}+4^{2}=41 .
$$

So, $x=\sqrt{41}$. Then the area of rectangle $A B C E$ (length \times width) is just $3 \cdot \sqrt{41}$.
The answer is \mathbf{b}.
6. In the following rectangular prism, what is the length of $A B$?

a) $\sqrt{33}$
b) $4 \sqrt{6}$
c) 96
d) 89
e) $\sqrt{89}$

Solution: First we label one of the other vertices:

Now, we calculate the length of the diagonal segment $B C$. If this length is x. Then

$$
x^{2}=3^{2}+4^{2}=9+16, \text { so } x=5
$$

Next, notice that vertices A, B, and C form a right triangle, so if y is the length of segment $A B$, then

$$
y^{2}=x^{2}+8^{2}=25+64=89, \text { so } y=\sqrt{89} .
$$

The answer is \mathbf{e}.
7. Rotating a triangle in the $x y$-plane about the y-axis forms a 3 -dimensional solid. Find the volume of the solid.

a) 6π
b) 12π
c) 18π
d) 24π
e) 36π

Solution: Rotating the triangle formed by the vertices $(0,0),(0,6)$, and $(3,0)$ forms a large cone. Rotating the triangle formed by the vertices $(0,0),(0,2)$, and $(3,0)$ forms a smaller cone.
If we subtract the volume of the second cone from the volume of the first cone, this should give us the desired volume.

$$
V_{1}-V_{2}=\frac{1}{3} \pi \cdot 3^{2} \cdot 6-\frac{1}{3} \pi \cdot 3^{2} \cdot 2=18 \pi-6 \pi=12 \pi
$$

The answer is \mathbf{b}.
8. A triangle in the $x y$-coordinate plane has vertices at $A=(0,0), B=(30,0)$, and $C=(12,6)$. A square is inscribed in the triangle with two vertices on side $A B$ and one vertex each on the other two sides of the triangle. Find the area of the square.
a) 16
b) $\frac{81}{4}$
c) $\frac{121}{4}$
d) $\frac{169}{9}$
e) 25

Solution: Here is a possible solution:

Construct a small square $D^{\prime} E^{\prime} F^{\prime} G^{\prime}$ as shown with D^{\prime} and E^{\prime} on side $\overline{A B}$, and G^{\prime} on side $\overline{A C}$. The ray $\overrightarrow{A F^{\prime}}$ meets side $\overline{A B}$ at point $F=(15,5)$. A dilation of the plane with center at A that takes F^{\prime} to F also takes the small square to a square with two vertices on side $\overline{A B}$ and one vertex each on the other two sides of the triangle. The side length of the larger square is the y-coordinate of F which is 5 . So the area is 25 .

The answer is \mathbf{e}.
Questions 9 and 10 refer to the following graph, which represents the cumulative number of miles d that a car has traveled after t minutes.

9. The total distance traveled in miles by the car from 0 to 5 minutes is
a) 1
b) 2
c) 3
d) 4
e) 5

Solution: The car has traveled 3 miles in 5 minutes.
The answer is c.
10. The average speed of the car from two minutes to six minutes is
a) 2 miles per minute.
b) $\frac{3}{4}$ of a mile per minute.
c) 5 miles per minute.
d) 1 mile per minute.
e) $\frac{1}{3}$ of a mile per minute.

Solution: The car traveled 5 miles at six minutes and 2 miles at 2 minutes. The average speed is $\frac{5-2}{6-2}=\frac{3}{4}$ of a mile per minute.
The answer is \mathbf{b}.
11. A coin is flipped 8 times. What is the probability that the number of heads is strictly greater than the number of tails?
a) $\frac{4}{9}$
b) $\frac{1}{2}$
c) $\frac{93}{256}$
d) $\frac{23}{84}$
e) $\frac{61}{84}$

Solution: First, we calculate the probability that we flip 4 heads and 4 tails:

$$
P(4 H, 4 T)=\frac{\binom{8}{4}}{2^{8}}=\frac{\frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1}}{256}=\frac{70}{256}
$$

So, the probability that we do not roll the same number of heads as tails is $\frac{186}{256}$. Once we rule out the above, the probability of rolling more heads than tails is exactly the same as rolling more tails than heads, so we just need to divide this number by 2 . We get $\frac{93}{256}$.
The answer is \mathbf{c}.
12. A plane slices a cube so that the intersection is a polygonal region. What is the maximum number of sides of the polygonal region?
a) 3
b) 4
c) 5
d) 6
e) 7

Solution: The intersection of a plane with the face of the cube is a line segment. So the polygonal region can have at most six sides because a cube has six faces. The following picture shows that six is possible.

The answer is \mathbf{d}.
13. If the repeating decimal $0.151515 \ldots$ is converted to a fraction and written in simplest form, what is the numerator?
a) 3
b) 5
c) 15
d) 25
e) 225

Solution: Let's say that $S=.151515 \ldots$. Then $100 S=15.151515 \ldots$. We can subtract these two equations in the following way:

$$
\begin{aligned}
100 \mathrm{~S} & =15.151515 \ldots \\
-\quad \mathrm{S} & =.151515 \ldots \\
\hline 99 \mathrm{~S} & =15
\end{aligned}
$$

So, $S=\frac{15}{99}=\frac{5}{33}$
The answer is \mathbf{b}.
14. I have letters to four people, and envelopes addressed to the four people, and (without looking) I randomly put a letter into each of the four envelopes. What is the probability that none of the letters will get put into its correct envelope?
a) $\frac{1}{4}$
b) $\frac{3}{4}$
c) $\frac{81}{256}$
d) $\frac{3}{8}$
e) $\frac{23}{24}$

Solution: First I count the total number of ways in which I can put letters in envelopes: $4!=$ $4 \cdot 3 \cdot 2 \cdot 1=24$. Next, Suppose that the envelopes are for person $\# 1, \# 2$, \#3, and \#4. Then in how many ways can I get everyone's letters wrong? The following table lists all possible ways to do this:

Envelopes			
1	2	3	4
2	1	4	3
2	3	4	1
2	4	1	3
3	1	4	2
3	4	1	2
3	4	2	2
4	1	2	3
4	3	1	2
4	3	2	1

So, the probability is $\frac{9}{24}=\frac{3}{8}$.
The answer is \mathbf{d}.
15. How many numbers in the range from 1 to 1,000 , inclusive, are not divisible by the first three primes (2, 3 or 5)?
a) 166
b) 266
c) 299
d) 701
e) 734

Solution: Let's count how many numbers between 1 and 1,000 (inclusive) are divisible by 2, 3, or 5.

How many numbers are divisible by 2 ?
$2,4,6, \ldots, 1,000: 500$
How many numbers are divisible by 3 ?
$3,6,9, \ldots, 999$: 333
How many numbers are divisible by 5 ?
$5,10,15 \ldots, 1,000: 200$
If we add these together, we get 1,033 . But we have over counted! Let's subtract the following:
How many numbers are divisible by 2 and 3 ? (We counted them twice!)
$6,12,18, \ldots, 996$: 166
How many numbers are divisible by 2 and 5 ? (We counted them twice!)
$10,20,30, \ldots, 100: 100$
How many numbers are divisible by 3 and 5 ? (We counted them twice!)
$15,30,45, \ldots, 990$: 66
So, now we have $1,033-166-100-66=701$.
But what about the numbers that are divisible by 2,3 , and 5 ? We counted them three times in the first step. But then we subtracted them three times in the second step. We need to add them back in.
How many numbers are divisible by 2,3 and 5 ?
$30,60, \ldots, 990: 33$
So, we get 734 numbers which are divisible by at least one of 2,3 , or 5 . Which means there are 266 numbers which are not divisible by 2,3 , or 5 .

The answer is \mathbf{b}.
16. If x is in the domain of the function $f(x)=\frac{\left(x^{2}-1\right) \sqrt{(3 x-2)}}{x-1}$, then
a) $0<x<2$ or $2<x<\infty$
b) $-\infty<x<1$ or $1<x<\infty$
c) $\frac{2}{3} \leq x$
d) $\frac{2}{3} \leq x<1$ or $1<x<\infty$
e) x is any real number.

Solution: $3 x-2 \geq 0$ and $x \neq 1$. So $\left[\frac{2}{3}, 1\right)$ or $(1, \infty)$.
The answer is \mathbf{d}.
17. The expression $\frac{\sqrt{x+4}-\sqrt{x}}{4}$ is the same as
a) $\frac{1}{\sqrt{x+4}+\sqrt{x}}$
b) $\frac{4}{\sqrt{x+4}+\sqrt{x}}$
c) $\frac{1}{2}$
d) $\frac{1}{\sqrt{x+4}-\sqrt{x}}$
e) $\frac{2 x+4}{\sqrt{x+4}-\sqrt{x}}$

Solution: $\frac{\sqrt{x+4}-\sqrt{x}}{4}=\frac{(\sqrt{x+4}-\sqrt{x})(\sqrt{x+4}+\sqrt{x})}{4(\sqrt{x+4}+\sqrt{x})}=\frac{x+4-x}{4 \sqrt{x+4}+\sqrt{x}}=\frac{1}{\sqrt{x+4}+\sqrt{x}}$
The answer is a.
18. If we are to choose real numbers a and b such that $0<a<b$, then we can best describe the solution set of $|x+12|<|3 x-1|$ as the set of all x such that
a) $-a<x<b$
b) $-b<x<a$
c) $x<-a$ or $x>b$
d) $x<-b$ or $x>a$
e) $x<a$ or $x>b$

Solution: Case $1 x+12 \geq 0$ and $3 x-1 \geq 0$ so $x \geq-12$ and $x \geq \frac{1}{3}$. This means $x \geq \frac{1}{3}$. Also $x+12<3 x-1$ so $\frac{13}{2}<x$. To satisfy both conditions $\frac{13}{2}<x$.
Case $2 x+12 \geq 0$ and $3 x-1<0$ so $x \geq-12$ and $x<\frac{1}{3}$. Also $x+12<-3 x+1$ so $x<\frac{-11}{4}$. Both conditions give $-12 \leq x<\frac{-11}{4}$.
Case $3 x+12<0$ and $3 x-1 \geq 0$ so $x<-12$ and $x \geq \frac{1}{3}$ which is impossible.
Case $4 x+12<0$ and $3 x-1<0$ so $x<-12$ and $x<\frac{1}{3}$ or $x<-12$. Also $-x-12<-3 x+1$ so $x<\frac{13}{2}$. Both conditions give $x<-12$
Combining all for cases gives $\frac{13}{2}<x \cup-12 \leq x<\frac{-11}{4} \cup x<-12$. Let $a=\frac{11}{4}$ and $b=\frac{13}{2}$ then $b<x$ or $-a>x$.
The answer is c.
19. Find the inverse function $f^{-1}(x)$ if $f(x)=\frac{2 x-1}{x+3}$.
a) $\quad f^{-1}(x)=\frac{3 x-1}{2-x}$
b) $\quad f^{-1}(x)=\frac{3 x+1}{2-x}$
c) $\quad f^{-1}(x)=\frac{2 x+1}{3-x}$
d) $f^{-1}(x)=\frac{x+1}{2+2 x}$
e) $f^{-1}(x)=\frac{2-x}{1+3 x}$

Solution: $y=\frac{2 x-1}{x+3},(x+3) y=2 x-1, x y+3 y-2 x=-1, x(y-2)=-1-3 y, x=\frac{-1-3 y}{y-2}$. Finally, we switch x and y

$$
y=\frac{-1-3 x}{x-2}
$$

The answer is \mathbf{b}.
20. Train stations A and B are on the same railroad line and are 50 miles away from each other. A train leaves station A heading towards station B at 1:00 pm going 20 miles an hour. Another train leaves station B heading toward station A at 2:00 pm going 10 miles an hour. When will the two trains meet each other?
a) $2: 30 \mathrm{pm}$
b) 3 pm
c) $3: 30 \mathrm{pm}$
d) 4 pm
e) $4: 30 \mathrm{pm}$

Solution: Train A travels $y=20 t$. Train B travels $x=10(t-1)$. They meet when $y=50-x$. So $20 t=50-10(t-1)=-10 t+60$. Giving $t=2$. The trains meet at 3 pm .
The answer is \mathbf{b}.
21. If $x^{a} x^{b}=1$ and $x>1$, find $4 a-b^{2}+a^{2}+4 b-10$.
a) -20
b) -10
c) 0
d) 10
e) 20

Solution: $x^{a+b}=1$ since $x \neq \pm 1$ then $a+b=0$. Since $a=-b,-10$ is the answer.
The answer is \mathbf{b}.
22. Find the number of digits in the product $25^{25} \times 2^{60}$.
a) 76
b) 37
c) 54
d) 28
e) 65

Solution: $25^{25} \times 2^{60}=\left(5^{2}\right)^{25} \times 2^{50} \times 2^{10}=5^{50} \times 2^{50} \times 32^{2}=10^{50} \times 1024=0.1024 \times 10^{54}$
The answer is c.
23. Positive integers m and n satisfy the equation $(2 m-7)(2 n-7)=25$. What are all possible values for $m+n$?
a) 2, 20, 24
b) $3,12,16$
c) $2,10,16$
d) 12,20
e) $2,12,20$

Solution: Factors of 25 are $\pm 1, \pm 25$ or $\pm 5, \pm 5$. Consider each set of factors. For factors 1 and 25 , $2 m-7=1$ and $2 n-7=25$ so $m=4$ and $n=16$. For factors 5 and $5,2 m-7=5$ so $m=n=6$. For factors $-1,-25,2 m-7=-1$ and $2 n-7=-25$ so $m=3$ and $n=-9$, but n cannot be negative. For factors -5 and $-5,2 m-7=-5$ so $m=n=1$.
The answer is \mathbf{e}.
24. Three sides of a quadrilateral have lengths 3,4 , and 9 . There exist positive real numbers a and b such that if l is the length of the fourth side of the quadrilateral, then $a<l<b$, and if l satisfies $a<l<b$, then there exists a quadrilateral with side lengths $3,4,9$, and l. Find $a+b$.
a) 18
b) 16
c) 9
d) 32
e) 24

Solution: If the three sides are colinear and do not overlap except at the end points they would add up to 16. If the sides are colinear and overlapped the gap between the shorter sides would be 2 . So $a+b=18$
The answer is a.
25. Two square regions A and B each have area 8 . One vertex of square B is the center point of square A. Find the area of $A \cup B$.
a) 16
b) 15
c) $10 \sqrt{2}$
d) 14
e) Cannot be determined.

Solution: Let $C=A \cap B$ be the region that lies in both A and B. By rotating C about the center point of square A by $90^{\circ}, 180^{\circ}$, and 270° we get a tiling of A by four congruent regions. So the area of C is $2=\frac{1}{4}$ the area of A. The area of $A \cup B=8+8-2=14$.
The answer is \mathbf{d}.
26. A plane slices a cone parallel to the base and one-third the distance from the vertex to the base and a second parallel plane slices the cone two-thirds the distance from the vertex to the base. What fraction of the volume of the cone is between the two slices?
a) $\frac{8}{9}$
b) $\frac{7}{27}$
c) $\frac{1}{3}$
d) $\frac{1}{9}$
e) $\frac{2}{27}$

Solution: The part of the cone above the first plane is similar to the the cone with a scaling factor of $\frac{1}{3}$ and its fraction of the volume of the cone is $\left(\frac{1}{3}\right)^{3}=\frac{1}{27}$. The part of the cone above the second plane is similar to the the cone with a scaling factor of $\frac{2}{3}$ and its fraction of the volume of the cone is $\left(\frac{2}{3}\right)^{3}=\frac{8}{27}$. So the fraction of the volume of the cone between the two slices is $\frac{8}{27}-\frac{1}{27}=\frac{7}{27}$. The answer is \mathbf{b}.
27. Suppose that the numbers 4-9, inclusive, are arranged in three pairs of distinct numbers. The numbers in each pair are added together, and the resulting three numbers are then multiplied together. What is the maximum value of the resulting product?
a) less than 1,801
b) between 1,801 and 1,900, inclusive
c) between 1,901 and
d) between 2,001 and 2,100 , inclusive
e) more than 2,100

Solution: If a, b, and c are positive numbers their arithmetic mean is $\frac{a+b+c}{3}$ and their geometric mean is $\sqrt[3]{a b c}$. The geometric mean is always less than or equal to the arithmetic mean; i.e., $\sqrt[3]{a b c} \leq$ $\frac{a+b+c}{3}$ or $a b c \leq\left(\frac{a+b+c}{3}\right)^{3}$. Suppose the numbers $4-9$, inclusive, are arranged in three pairs of distinct numbers. Let a, b, and c the sum of each pair. Then $a+b+c=4+5+6+7+8+9=39$. So $a b c \leq\left(\frac{a+b+c}{3}\right)^{3}=\left(\frac{39}{3}\right)^{3}=13^{3}$. Since $4+9=5+8=6+7=13$, we know that it is possible to attain 13^{3}.
The answer is \mathbf{e}.
28. Suppose that Miles lists all possible (distinct) rearrangements of the letters in the word MATHEMATICS. He then picks one rearrangement at random. What is the probability that the first five letters of this rearrangement are ATTIC (in order)?
a) $\frac{1}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}$
b) $\frac{2}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}$
c) $\frac{4}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}$
d) $\frac{6}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}$
e) $\frac{8}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}$

Solution: The eleven-letter word MATHEMATICS has three letters that are repeated. So the number of distinct rearrangements is $\frac{11!}{(2!)(2!)(2!)}=\frac{11!}{8}$. If ATTIC is at the beginning of one of the rearrangements there are now six letters left to complete the word with one letter appearing twice.

So there are $\frac{6!}{2!}=\frac{6!}{2}$ distinct rearrangements that begin with ATTIC. The probability of choosing one of these arrangements at random is $\frac{6!}{2} \div \frac{11!}{8}=\frac{4 \cdot 6!}{11!}=\frac{4}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7}$.
The answer is c.
29. The Francis family has 5 children: Amanda, Andrea, Braden, Bethany, and Caitlyn. Mr. Francis brings cookies home one day. He has 2 sugar cookies, 2 peanut butter cookies, and one oatmeal cookie. In how many ways can Mr. Francis distribute the cookies to his children if each child must have a whole cookie, Amanda and Andrea insist on having the same type of cookie, and Braden and Bethany refuse to eat the same kind of cookie?
a) 4
b) 5
c) 6
d) 7
e) 8

Solution: If Amanda and Andrea both have sugar cookies, then either Braden or Bethany must get the only oatmeal cookie; otherwise, Braden and Bethany both get peanut butter cookies. So there are two possibilities. If Amanda and Andrea both have peanut butter cookies, then, once again, either Braden or Bethany must get the only oatmeal cookie and there are two possibilities. So there are a total of four possibilities.
The answer is a.
30. Annabeth and Elinor are hoping to meet for dinner. They will each arrive at their favorite restaurant at a random time between 6:00 and 8:00 pm, stay for 20 minutes, and leave. What is the probability that they will see each other at the restaurant?
а) $\frac{7}{36}$
b) $\frac{9}{36}$
c) $\frac{11}{36}$
d) $\frac{13}{36}$
e) $\frac{15}{36}$

Solution: Measure time, t, in minutes starting at 6:00 pm. Let x be Annabeth's arrival time and y be Elinor's arrival time. Then $0 \leq x \leq 120,0 \leq y \leq 120$, and they meet when $x-20 \leq y \leq x+20$. The probability is the area of the shaded hexagonal region divided by the area of the 120×120 square.

$$
\frac{120^{2}-100^{2}}{120^{2}}=\frac{12^{2}-10^{2}}{12^{2}}=\frac{44}{144}=\frac{11}{36}
$$

The answer is c.
31. Let S be the set of all positive integers n such that n^{3} is a multiple of both 16 and 24 . What is the largest integer that is a divisor of every integer n in S ?
a) 6
b) 12
c) 18
d) 24
e) 216

Solution: If n^{3} is divisible by 16 , then the prime factorization of n must contain at least 2^{2}; otherwise $16=2^{4}$ will not divide n^{3}.

If n^{3} is divisible by 24 , then the prime factorization of n must contain at least 3^{1} and 2^{1}.
The largest integer that is a divisor of all such n is $2^{2} 3^{1}=12$.
The answer is \mathbf{b}.
32. Tyson is three times as old as Mandi. Two years ago, Tyson was four times as old as Mandi. How old is Mandi now?
a) 16
b) 14
c) 7
d) 6
e) 4

Solution: Let T equal Tyson's age now and $M=$ Mandi's age now. Then

$$
\begin{aligned}
T & =3 M \\
T-2 & =4(M-2)
\end{aligned}
$$

So $T=3 M=4 M-6$, and $M=6$.
The answer is \mathbf{d}.
33. Suppose that

$$
A \star B=2 A+3 B, \text { and } C \odot D=\frac{C^{2}+2 D}{D}
$$

What is $(12 \star 4) \vee 3$?
a) 432
b) 433
c) 434
d) 435
e) 436

Solution:

- $A \star B=2 A+3 B, 12 \star 4=2 \cdot 12+3 \cdot 4=24+12=36$ and $(12 \star 4) \odot 3=36 \bigcirc 3$
- $C \oslash D=\frac{C^{2}+2 D}{D}$, so $36 \oslash 3=\frac{36^{2}+2 \cdot 3}{3}=12 \cdot 36+2=434$

The answer is \mathbf{c}.
34. Solution 1 contains only liquids a and b in a ratio of $1: 4$. Solution 2 contains also contains only liquids a and b, but in a ratio of $1: 1$. Solution 3 is obtained by mixing Solutions 1 and 2 in a ratio of $5: 1$. How many Tablespoons of liquid a are in 60 Tablespoons of Solution 3 ?
a) 15
b) 18
c) 20
d) 24
e) 30

Solution: Solution 1: The first two lines of the table show the number of units of liquid a and units of liquid b in 5 units of Solution 1 and 2 units of Solution 2. Doubling the total number of units of Solution 1 to 10 , also doubles the amounts of liquid a and liquid b in 10 units of Solution 1. The amount of liquid a and liquid b in 12 units of Solution 3 can be found by adding rows 2 and 3 because the total amounts, 10 and 2, have a ratio of $5: 1$. Thus the ratio of liquid a to liquid b in Solution 3 is $1: 3$. So liquid a is 25% of Solution 3. Thus, 25% of 60 Tablespoons is 15 Tablespoons.

	units of liquid a	units of liquid b	total units
Solution 1	1	4	5
Solution 2	1	1	2
Solution 1	2	8	10
Solution 3	3	9	12

Solution 2: The first solution is $\frac{1}{5}$ liquid a and the second solution is $\frac{1}{2}$ liquid a. The third solution is $\frac{5}{6}$ solution 1 and $\frac{1}{6}$ solution 2. So the fraction of liquid a in solution 3 is $\frac{5}{6} \cdot \frac{1}{5}+\frac{1}{6} \cdot \frac{1}{2}=\frac{1}{4}$ and $\frac{1}{4} \cdot 60$ Tablespoons $=15$ Tablespoons.
The answer is a.
35. Suppose that in the following figure, $A B=B C=C D=D E=E F$. What is the ratio of the area of triangle $A B H$ to the area of triangle $A F G$?

a) $1: 5$
b) $1: 10$
c) $1: 15$
d) $1: 20$
e) $1: 25$

Solution: For similar figures whose lengths have ratio $a: b$, the areas have ratio $a^{2}: b^{2}$. The ratio of the lengths of triangle $A B H$ to triangle $A F G$ is $1: 5$. So the ratio of the areas is $1: 25$.
The answer is \mathbf{e}.
36. If the average test score for five students is 92 , which of the following is the highest score a sixth student could get so that the average of all six scores would be no more than 86 ?
a) 55
b) 56
c) 57
d) 58
e) 59

Solution: If the average score for five students is 92 , the sum of their scores is $5 \cdot 92=460$. For the average score for six students to be 86 , the sum of their scores must be $6 \cdot 86=516$. If the sixth student got a score of $516-460=56$, then the average score would be exactly 86 . If the sixth student got a score higher than 56 , then the average for the six students would be more than 86 . So the correct answer is 56 .

The answer is \mathbf{b}.
37. How many odd four-digit numbers are there that do not contain the digit 6 ?
a) 2560
b) 3240
c) 3645
d) 4050
e) 5000

Solution: For a four-digit number $a b c d$ to be odd and not contain the digit $6, a \in\{1,2,3,4,5,7,8,9\}$, $b, c \in\{0,1,2,3,4,5,7,8,9\}$ and $d \in\{1,3,5,7,9\}$. So there are 8 choices for $a, 9$ choices for each of b and c, and 5 choices for d. The total number of such four digit numbers is $8 \cdot 9 \cdot 9 \cdot 5=3240$.

The answer is \mathbf{b}.
38. Points A, B, and C lie on the circle. The point D is the center of a circle and lies on the line segment $A C$. If $A B=6$ and $B D=5$, find $B C$.

a) 6
b) 6.5
c) 7
d) 7.5
e) 8

Solution: $B D=5$ is the radius of the circle, and $A C$ is a diameter. So the diameter of the circle is 10. Triangle $A B C$ is a right triangle with hypotenuse $A C=10$ and $\operatorname{leg} A B=6$. By the Pythagorean Theorem, the remaining leg $B C=8$.

The answer is \mathbf{e}.
39. How many isosceles triangles can be drawn if each vertex must be one of the dots in the following square lattice?
a) at most 80
b) between 81 and 90 , inclusive
c) between 91 and 100, inclusive
d) between 101 and 110, inclusive
e) greater than 110

Solution: Here are the various types of triangles, together with how often they occur:

There are 108, altogether.
The answer is \mathbf{d}.
40. If three points are scattered randomly on a circle, what is the probability that one can draw a line through the center of the circle, such that all three points lie on one side of the line?

a) $\frac{1}{2}$
b) $\frac{3}{4}$
c) $\frac{7}{8}$
d) $\frac{5}{8}$
e) $\frac{2}{3}$

Solution: We can figure out this probability by labeling the three randomly chosen points A, B, and C. We can just rotate the circle so that point A is at the 'north pole' without changing the probability. Next, we worry about where point B lands. Let's label the circle so that if it lands at point A, we call that position 0 . If it lands 90° clockwise on the circle from A, that is called $1 / 4$, and so on.

We want to figure out, given the position of point B, what is the probability that point C will land in a position so that all three points will be on one side of some diameter of the circle.
Notice that if B lands at 0 , the three points will be on one side of a diameter no matter where C lands.

What if B lands at $1 / 4$?

So, in this case, the probability that the three points land in a position so that all three points will be on one side of some diameter of the circle is $3 / 4$.
What if B lands at $3 / 8$?

So, in this case, the probability that the three points land in a position so that all three points will be on one side of some diameter of the circle is $5 / 8$.

If we plot each of these probabilities, we get the following graph:

Position of B

The area of this region, which is also the probability we want, is $3 / 4$.
The answer is \mathbf{b}.

