University of Utah, Department of Mathematics May 2020, Algebra Qualifying Exam

There are ten problems on the exam. You may attempt as many problems as you wish; five correct solutions count as a pass. Show all your work, and provide reasonable justification for your answers.

- 1. Show there is no simple group of order $448 = 2^6 \cdot 7$.
- 2. Suppose *G* is a finitely generated Abelian group such that the automorphism group of *G* is finite. Let *T* be the torsion subgroup of *G*. Describe all possibilities for G/T up to isomorphism.
- 3. Let $R = \mathbb{Z}[x]$ and suppose that $I = \langle x \rangle$ and that $J = \langle x, 5 \rangle$. How many elements are in $\operatorname{Tor}_i^R(R/I, R/J)$ for i = 0, 1, 2?
- 4. Suppose $R = \mathbb{F}_3[x]$. Let *M* be the module generated by three elements a, b, c subject to the three relations $-xa + x^2b + (x^2 1)c = 0$, xb + xc = 0 and $xb + x^2c = 0$. Find a direct sum of cyclic *R*-modules isomorphic to M.
- 5. Show that there are at most 5 groups of order 20.
- Let K be an algebraically closed field. Let f ∈ K[x,y] be irreducible and let g ∈ K[x,y] be such that f does not divide g. Prove that there is a point (k₁,k₂) ∈ K² such that

$$f(k_1, k_2) = 0$$
 and $g(k_1, k_2) \neq 0$.

- 7. Find a polynomial $f(x) \in \mathbb{F}_2[x]$ such that $\mathbb{F}_2[x]/f(x)$ is a field with 8 elements.
- 8. Let *R* be the ring of continuous real-valued functions on the closed interval [0,1]. What are the maximal ideals of *R*?
- 9. Let σ be the automorphism of $\mathbb{F}_5(t)$ sending t to t + 1. Let G be the subgroup of Aut $(\mathbb{F}_5(t))$ generated by σ . Find an element $s \in \mathbb{F}_5(t)$ such that

$$\mathbb{F}_5(t)^G = \mathbb{F}_5(s).$$

10. Let $2^{1/4}$ be the unique positive real fourth root of of 2 in \mathbb{R} . Show that $\mathbb{Q}(2^{1/4})/\mathbb{Q}$ is not a Galois extension.