PhD Preliminary Qualifying Examination: Applied Mathematics II (6720)

May 2022

Instructions: Answer three out of five questions. Indicate clearly which questions you wish to be graded.

1. Let C be the unit circle centered at the origin. Cauchy's integral formula implies that

$$
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f(\xi)}{\xi-z} d \xi, \quad|z|<1
$$

(a) Perform the change of variables $\xi=\mathrm{e}^{i \theta}$ to show that

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f(\xi) \xi}{\xi-z} d \theta
$$

where z lies inside the unit circle. Explain why

$$
0=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f(\xi) \xi}{\xi-1 / \bar{z}} d \theta
$$

(b) Using the fact that $\xi=1 / \bar{\xi}$ on the unit circle, show that

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\xi)\left(\frac{\xi}{\xi-z} \pm \frac{\bar{z}}{\bar{\xi}-\bar{z}}\right) d \theta
$$

(c) Taking the plus sign in part (b), deduce the Poisson formula for the real part $u(r, \phi)$ of $f(z)$ with $z=r \mathrm{e}^{i \phi}$:

$$
u(r, \phi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-r^{2}}{1-2 r \cos (\phi-\theta)+r^{2}} u(1, \theta) d \theta
$$

This shows that the real part of $f(z)$ on the unit circle determines the real part of $f(z)$ everywhere inside the unit circle.
2. Use a sector contour with radius R centered at the origin with angle $0 \leq \theta \leq 2 \pi / 5$ to find, for $a>0$,

$$
\int_{0}^{\infty} \frac{d x}{x^{5}+a^{5}}=\frac{\pi}{5 a^{4} \sin (\pi / 5)}
$$

3. (a) Use principal value integrals to show that

$$
\int_{0}^{\infty} \frac{\cos k x-\cos m x}{x^{2}} d x=-\frac{\pi}{2}(k-m), k, m>0
$$

(b) Deduce from (a) that

$$
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{\pi}{2}
$$

4. Determine the conformal map f that takes the region D exterior to two circular cylinders of radius R to the region outside a circular disc of unit radius centered at the origin (see figure 1). Use the following steps:
(a) Show how the map $\omega=i-2 R / z$ takes the region D to the infinite strip $0<\operatorname{Im} \omega<2 i$.
(b) Show how the map $\xi=\mathrm{e}^{\pi \omega / 2}$ takes the infinite strip to the upper-half complex ξ-plane.
(c) Show how the map $\eta=(\xi+i) /(\xi-i)$ takes the upper-half complex ξ-plane to the region outside the unit disc, that is, $|\eta|>1$.
(d) Find f.

Figure 1: Find the conformal map f
5. (a) Discuss the flow pattern around a circular obstacle associated with the complex potential

$$
\Omega(z)=u_{0}\left(z+\frac{a^{2}}{z}\right)+\frac{i \gamma}{2 \pi} \log z
$$

(b) Show that $r=a$ is a streamline.
(c) Determine the asymptotic velocity when $z \rightarrow \infty$. Sketch the flow when $\gamma=0$.
(d) Use the Blasius formula

$$
F_{x}-i F_{y}=\frac{1}{2} i \rho \int_{C}\left(\frac{d \Omega}{d z}\right)^{2} d z
$$

to determine the lift on the obstacle when $\gamma \neq 0$.

