PhD Preliminary Qualifying Examination: Applied Mathematics II (6720) May 2022

Instructions: Answer three out of five questions. Indicate clearly which questions you wish to be graded.

1. Let C be the unit circle centered at the origin. Cauchy's integral formula implies that

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\xi)}{\xi - z} d\xi, \quad |z| < 1.$$

(a) Perform the change of variables $\xi = e^{i\theta}$ to show that

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(\xi)\xi}{\xi - z} d\theta,$$

where z lies inside the unit circle. Explain why

$$0 = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(\xi)\xi}{\xi - 1/\bar{z}} d\theta.$$

(b) Using the fact that $\xi = 1/\bar{\xi}$ on the unit circle, show that

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(\xi) \left(\frac{\xi}{\xi - z} \pm \frac{\bar{z}}{\bar{\xi} - \bar{z}}\right) d\theta$$

(c) Taking the plus sign in part (b), deduce the Poisson formula for the real part $u(r, \phi)$ of f(z) with $z = re^{i\phi}$:

$$u(r,\phi) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1-r^2}{1-2r\cos(\phi-\theta)+r^2} u(1,\theta)d\theta.$$

This shows that the real part of f(z) on the unit circle determines the real part of f(z) everywhere inside the unit circle.

2. Use a sector contour with radius R centered at the origin with angle $0 \le \theta \le 2\pi/5$ to find, for a > 0,

$$\int_0^\infty \frac{dx}{x^5 + a^5} = \frac{\pi}{5a^4 \sin(\pi/5)}$$

3. (a) Use principal value integrals to show that

$$\int_0^\infty \frac{\cos kx - \cos mx}{x^2} dx = -\frac{\pi}{2}(k - m), \ k, m > 0.$$

(b) Deduce from (a) that

$$\int_0^\infty \frac{\sin^2 x}{x^2} dx = \frac{\pi}{2}.$$

- 4. Determine the conformal map f that takes the region D exterior to two circular cylinders of radius R to the region outside a circular disc of unit radius centered at the origin (see figure 1). Use the following steps:
 - (a) Show how the map $\omega = i 2R/z$ takes the region D to the infinite strip $0 < \mathrm{Im}\omega < 2i$.
 - (b) Show how the map $\xi = e^{\pi \omega/2}$ takes the infinite strip to the upper-half complex ξ -plane.

(c) Show how the map $\eta = (\xi + i)/(\xi - i)$ takes the upper-half complex ξ -plane to the region outside the unit disc, that is, $|\eta| > 1$.

(d) Find f.

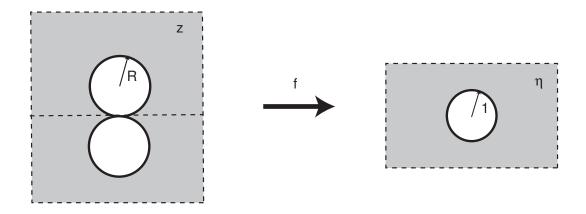


Figure 1: Find the conformal map f

5. (a) Discuss the flow pattern around a circular obstacle associated with the complex potential

$$\Omega(z) = u_0 \left(z + \frac{a^2}{z} \right) + \frac{i\gamma}{2\pi} \log z.$$

- (b) Show that r = a is a streamline.
- (c) Determine the asymptotic velocity when $z \to \infty$. Sketch the flow when $\gamma = 0$.
- (d) Use the Blasius formula

$$F_x - iF_y = \frac{1}{2}i\rho \int_C \left(\frac{d\Omega}{dz}\right)^2 dz$$

to determine the lift on the obstacle when $\gamma \neq 0$.