Do any one of problems 1-2 and any two of problems 3-5. Clearly mark the problems you want to be graded. Each complete problem has equal value.

1) Suppose $f(x) \in C^{n+1}([a, b])$, and consider the interpolation problem: For $a \leq x_{0}<x_{1}<$ $x_{2}<\ldots<x_{n-1}<x_{n} \leq b$, find a polynomial $p(x)$ of degree at most n for which $p\left(x_{j}\right)=f\left(x_{j}\right)$, $j=0,1, \ldots n$.
(a) Show that this problem has at most one solution.
(b) Show that this problem has a solution.
(c) Show, for any $x \in[a, b]$, that

$$
f(x)-p(x)=\frac{f^{n+1}(\xi)}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

for some $\xi \in[a, b]$.
2) Suppose you have a program for calculating approximations to a quantity A which takes a value of h as input and produces a value A_{h} as output. Suppose that

$$
\begin{equation*}
A=A_{h}+a_{1} h+a_{2} h^{2}+a_{3} h^{3}+a_{4} h^{4}+O\left(h^{5}\right) . \tag{1}
\end{equation*}
$$

Here, h should be thought of as a small positive number, and a_{1}, a_{2}, a_{3}, and a_{4} are fixed (but unknown) numbers.
(a) What is the order of the approximation A_{h} for A ?
(b) Use Eq. (1) to derive an approximation B_{h} to A for which the error $A-B_{h}=O\left(h^{3}\right)$ and which uses only your program and some simple algebra.
3) Consider the 9-point discrete Laplacian
$\left(\Delta_{9}^{h} U\right)_{j, l}=\frac{1}{6 h^{2}}\left(U_{j-1, l-1}+U_{j+1, l-1}+U_{j-1, l+1}+U_{j+1, l+1}+4 U_{j, l-1}+4 U_{j-1, l}+4 U_{j+1, l}+4 U_{j, l+1}-20 U_{j, l}\right)$
(a) State and prove a maximum principle for $\Delta_{9}^{h} U$. (Hint: Think about what the key observation is in stating and proving a maximum principle for the standard 5-point discrete Laplacian.)
(b) Show that the following problem has a solution and that it is unique:

$$
\begin{align*}
& \frac{1}{6 h^{2}}\left(U_{j-1, l-1}+U_{j+1, l-1}+U_{j-1, l+1}+U_{j+1, l+1}+\right. \\
& \left.\quad 4 U_{j, l-1}+4 U_{j-1, l}+4 U_{j+1, l}+4 U_{j, l+1}-20 U_{j, l}\right)=f_{j, l} \tag{2}
\end{align*}
$$

for $j=1, \ldots, m$ and $l=1, \ldots m$ (where $(m+1) h=1$) along with the conditions $U_{j, l}=0$ at grid points on the boundary of the domain.
(c) The local trucation error in using the scheme in Eq. (2) to find an approximate solution of $\Delta u=f$ for $0<x<1$ and $0<y<1$ with homogeneous Dirichlet boundary conditions is given by

$$
\tau_{j, l}=\frac{1}{12}\left(u_{x x x x}+u_{x x y y}+u_{y y y y}\right) h^{2}+O\left(h^{4}\right)
$$

where the derivatives of u are evaluated at $x_{j}=j h, y_{l}=l h$. Prove that the values $U_{j, l}$ obtained from Equations (2), along with zero discrete boundary values, converge to the values $u\left(x_{j}, y_{l}\right)$ of the true solution to the PDE BVP as $h \rightarrow 0$. (Hint: Use the relation between the set of global error values $E_{j, l}=U_{j, l}-u\left(x_{j}, y_{l}\right)$ and the values of the local truncation error.)
4) Suppose you are trying find an approximation $u(t)$ to a function $v(t)$ and you know that the following two equations hold:

$$
\begin{aligned}
u\left(t_{n+1}\right) & =C(k) u\left(t_{n}\right) \\
v\left(t_{n+1}\right) & =C(k) v\left(t_{n}\right)+k \tau\left(t_{n}\right)
\end{aligned}
$$

for some smooth function $\tau(t, k)$ that is not identically 0 . Here, $k>0, t_{n}=n k$, and $C(k)$ is a linear operator which depends on k but not on $u(t)$ or $v(t)$. State and prove conditions on $C(k)$ and $\tau(t, k)$ which are sufficient to imply that

$$
\lim _{k \rightarrow 0, n k=t_{n}=t} u\left(t_{n}\right)=v(t) .
$$

5) For the initial value problem $u^{\prime}(t)=f(u(t), t), u(0)=\eta$, where $f(u, t)$ is continuous with respect to t and Lipschitz continuous with respect to u, consider the scheme

$$
\frac{U^{n+2}-\frac{4}{3} U^{n+1}+\frac{1}{3} U^{n}}{k}=\frac{2}{3} f\left(U^{n+2}, t_{n+2}\right),
$$

where $t_{n}=n k$, and U^{n} is supposed to approximate $u\left(t_{n}\right)$.
(a) Analyze the consistency, zero-stability, and convergence of this scheme.
(b) If you apply this scheme to the initial value problem

$$
u^{\prime}(t)=-10^{12}(u(t)-\cos (t))-\sin (t), \quad u(0)=2,
$$

what issues should you consider in choosing the timestep k ? Are there time intervals in which k must be very small to get a reasonable solution and others in which it does not? Explain your answers.

