University of Utah, Department of Mathematics May 2020, Algebra Qualifying Exam

There are five problems on the exam. You may attempt as many problems as you wish; three correct solutions count as a high pass. 2 correct solutions count as a pass. Show all your work, and provide reasonable justification for your answers.

1. Show there is no simple group of order $2304=2^{8} \cdot 3^{2}=256 \cdot 9$.
2. Let $K=\mathbb{Q}[\sqrt{2}, \sqrt{3}, \sqrt{5}]$. Show that K is Galois over \mathbb{Q} and identify $\operatorname{Gal}(K / \mathbb{Q})$ up to isomorphism.
3. Classify the groups of order 28 up to isomorphism.
4. Let F be a field of characteristic zero and let E / F be a finite Galois extension. Suppose that $E=F[\alpha]$. Suppose that there exists $\sigma \in G=\operatorname{Gal}(E / F)$ with $\sigma(\alpha)=-\alpha$. Prove that $E \neq F\left[\alpha^{2}\right]$.
5. Let L be the splitting field of $\left(x^{3}+2 x+1\right)\left(x^{3}+x^{2}+2\right)\left(x^{2}+1\right)$ over \mathbb{F}_{3}. How many proper subfields does L have?
