UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS Ph.D. Preliminary Examination in Complex Analysis May 25, 2022.

Instructions: This exam has two sections, A and B. Three (3) completely correct problems in section A will be a high pass and three (3) completely correct problems with at least one from section A is a passing exam. Note that solutions for problems in section B will not be counted towards a high pass. Be sure to provide all relevant definitions and statements of theorems cited. All solutions must include rigorous justification unless otherwise indicated.

Section A:

- 1. Let Ω be a simply connected domain in \mathbb{C} . Show that if a holomorphic function $f : \Omega \to \mathbb{C}$ has finitely many zeros, all of even order, then f has a holomorphic square root in Ω , i.e. there is a holomorphic function $g : \Omega \to \mathbb{C}$ so that $f(z) = g(z)^2$.
- 2. Show that if f is holomorphic on $\mathbb{D} \setminus \{0\}$ and

$$\lim_{z \to 0} zf(z) = 0$$

then f can be extended to a holomorphic function on \mathbb{D} .

3. Show that there is no function f holomorphic on \mathbb{D} so that

$$f\left(\frac{1}{n}\right) = \frac{1}{n+2}$$

for all large $n \in \mathbb{N}$.

Suppose f : D \ {0} → C is holomorphic and has an essential singularity at
Show that for all ε > 0 there is z near 0 so that

$$\left|f(z) - \frac{1}{z^4}\right| \le \varepsilon.$$

5. Suppose that $f : \mathbb{D} \to \mathbb{D}$ is holomorphic and zero at points $z_1, \ldots, z_n \in \mathbb{D}$ counted with multiplicity. Show that

$$|f(z)| \le |\psi_{z_1}(z)| \cdots |\psi_{z_n}(z)|$$
 in \mathbb{D}

where

$$\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \bar{\alpha}z}.$$

6. Using the residue calculus evaluate the integral

$$\int_{-\infty}^{\infty} \frac{1}{1+x^4} dx$$

Section B:

7. Prove or disprove: There is no nonconstant entire function satisfying

$$\operatorname{Re}(f(z)) < \operatorname{Im}(f(z))$$

for all z. In your solution don't quote either Picard theorem.

8. State and prove Morera's Theorem.

 $\mathbf{2}$