University of Utah, Department of Mathematics Algebra 2 Qualifying Exam May 2021

There are five problems on this exam. You may attempt as many problems as you wish; two correct solutions count as a *pass*, and three correct as a *high pass*. Show all of your work and provide reasonable justification for your answers.

1. Determine whether the following two fields K and L are isomorphic; if they are isomorphic then construct an explicit isomorphism between them.

$$K = \mathbb{Q}[x]/(x^2 + 2x + 2), \ L = \mathbb{Q}(i) \subset \mathbb{C}.$$

- 2. Suppose $f(x) \in \mathbb{Q}[x]$ is a polynomial with Galois group of order $594 = 2 \cdot 3^3 \cdot 11$. Show that f is solvable in radicals.
- 3. Recall that the *standard representation* of S_n is the subspace

$$V_n := \{(x_1, \dots, x_n) \in \mathbb{C}^n, x_1 + x_2 + \dots + x_n = 0\}$$

with S_n acting by permutation of the coordinates. Show that $\wedge^2 V_5$ is an irreducible representation of S_5 .

- 4. Show that if L/K is Galois and $f \in K[x]$ is monic irreducible, then every irreducible factor of f in L[x] has the same degree.
- 5. Suppose σ and τ are two elements of A_5 such that, for every finite dimensional complex representation ρ of S_5 , $\chi_{\rho}(\sigma) = \chi_{\rho}(\tau)$ (here χ_{ρ} denotes the character of ρ). Are σ and τ conjugate in A_5 ?