University of Utah, Department of Mathematics

Algebra 2 Qualifying Exam

May 2021

There are five problems on this exam. You may attempt as many problems as you wish; two correct solutions count as a pass, and three correct as a high pass. Show all of your work and provide reasonable justification for your answers.

1. Determine whether the following two fields K and L are isomorphic; if they are isomorphic then construct an explicit isomorphism between them.

$$
K=\mathbb{Q}[x] /\left(x^{2}+2 x+2\right), L=\mathbb{Q}(i) \subset \mathbb{C} .
$$

2. Suppose $f(x) \in \mathbb{Q}[x]$ is a polynomial with Galois group of order $594=2 \cdot 3^{3} \cdot 11$. Show that f is solvable in radicals.
3. Recall that the standard representation of S_{n} is the subspace

$$
V_{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}, x_{1}+x_{2}+\ldots+x_{n}=0\right\}
$$

with S_{n} acting by permutation of the coordinates. Show that $\wedge^{2} V_{5}$ is an irreducible representation of S_{5}.
4. Show that if L / K is Galois and $f \in K[x]$ is monic irreducible, then every irreducible factor of f in $L[x]$ has the same degree.
5. Suppose σ and τ are two elements of A_{5} such that, for every finite dimensional complex representation ρ of S_{5}, $\chi_{\rho}(\sigma)=\chi_{\rho}(\tau)$ (here χ_{ρ} denotes the character of ρ). Are σ and τ conjugate in A_{5} ?

