DEPARTMENT OF MATHEMATICS UNIVERSITY OF UTAH PH.D. PRELIMINARY EXAMINATION IN COMPLEX ANALYSIS

${\rm MAY}\ 28,\ 2021$

Instructions: This exam has two sections, A and B. Three (3) completely correct problems in section A will be a high pass and three (3) completely correct problems with at least one from section A is a passing exam. Note that solutions for problems in section B will not be counted towards a high pass. Be sure to provide all relevant definitions and statements of theorems cited. All solutions must include rigorous justification unless otherwise indicated.

Section A:

- 2. Let U be a domain in \mathbb{C} . Consider the following collection of functions

 $X = \{f: U \to \mathbb{C}: f \text{ holomorphic and } \int_U |f|^2 \le M\}$

where \int_U is the standard Lebesgue area integral. Show that X is compact with respect to the topology of uniform convergence on compact subsets of U (Note: this topology is metrizable so you can show sequential compactness).

- 3. Show that if f(z) is entire and nowhere zero then there is an entire function g(z) such that $f(z) = g(z)^2$.
- 4. Suppose that f_n are holomorphic on a domain $U \subset \mathbb{C}$ and $f_n(U) \subset \mathbb{C} \setminus \{w\}$ for all n and some fixed $w \in \mathbb{C}$. Show that if $f_n \to f$ locally uniformly in U then either $f(z) \equiv w$ or $f(U) \subset \mathbb{C} \setminus \{w\}$.
- 5. Suppose that f is entire and $f(\mathbb{C}) \subset \mathbb{C} \setminus [0, \infty)$, show that f is constant. Do not use either Picard Theorem (at least not without proof).
- 6. Compute the following integral using the techniques of complex analysis

$$\int_0^\infty \frac{\log(x)}{2+x^2} \, dx.$$

Section B:

- 1. Suppose that f is holomorphic on the upper half plane $\mathbb{H} = {\text{Im}(z) > 0}$, f extends continuously to $\overline{\mathbb{H}} = \mathbb{H} \cup \mathbb{R}$, and $f(\mathbb{R}) \subset \mathbb{R}$. Show that f has a unique holomorphic extension to \mathbb{C} and explicitly identify that extension (in terms of f).
- 2. How many zeros does the function

$$f(z) = z^3 + 2 - e^{-z}$$

have in the right half plane $\{\operatorname{Re}(z) > 0\}$.