## DEPARTMENT OF MATHEMATICS <br> UNIVERSITY OF UTAH <br> PH.D. PRELIMINARY EXAMINATION IN COMPLEX ANALYSIS

MAY 28, 2021

Instructions: This exam has two sections, A and B. Three (3) completely correct problems in section A will be a high pass and three (3) completely correct problems with at least one from section A is a passing exam. Note that solutions for problems in section B will not be counted towards a high pass. Be sure to provide all relevant definitions and statements of theorems cited. All solutions must include rigorous justification unless otherwise indicated.

## Section A:

1. Show that any function which is meromorphic on the Riemann sphere, $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$, is either constant or can be written as the sum of the singular parts of its Laurent series at its poles, in particular conclude that the function is rational.
2. Let $U$ be a domain in $\mathbb{C}$. Consider the following collection of functions

$$
X=\left\{f: U \rightarrow \mathbb{C}: \quad f \text { holomorphic and } \int_{U}|f|^{2} \leq M\right\}
$$

where $\int_{U}$ is the standard Lebesgue area integral. Show that $X$ is compact with respect to the topology of uniform convergence on compact subsets of $U$ (Note: this topology is metrizable so you can show sequential compactness).
3. Show that if $f(z)$ is entire and nowhere zero then there is an entire function $g(z)$ such that $f(z)=g(z)^{2}$.
4. Suppose that $f_{n}$ are holomorphic on a domain $U \subset \mathbb{C}$ and $f_{n}(U) \subset \mathbb{C} \backslash\{w\}$ for all $n$ and some fixed $w \in \mathbb{C}$. Show that if $f_{n} \rightarrow f$ locally uniformly in $U$ then either $f(z) \equiv w$ or $f(U) \subset \mathbb{C} \backslash\{w\}$.
5. Suppose that $f$ is entire and $f(\mathbb{C}) \subset \mathbb{C} \backslash[0, \infty)$, show that $f$ is constant. Do not use either Picard Theorem (at least not without proof).
6. Compute the following integral using the techniques of complex analysis

$$
\int_{0}^{\infty} \frac{\log (x)}{2+x^{2}} d x
$$

## Section B:

1. Suppose that $f$ is holomorphic on the upper half plane $\mathbb{H}=\{\operatorname{Im}(z)>0\}$, $f$ extends continuously to $\overline{\mathbb{H}}=\mathbb{H} \cup \mathbb{R}$, and $f(\mathbb{R}) \subset \mathbb{R}$. Show that $f$ has a unique holomorphic extension to $\mathbb{C}$ and explicitly identify that extension (in terms of $f$ ).
2. How many zeros does the function

$$
f(z)=z^{3}+2-e^{-z}
$$

have in the right half plane $\{\operatorname{Re}(z)>0\}$.

