UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS Ph.D. Preliminary Examination in Differentiable Manifolds January, 2023.

Instructions. Answer as many questions as you can. Each question is worth 10 points. For a high pass you need to solve *completely* at least three problems and score at least 30 points. For a pass you need to solve *completely* at least two problems and score at least 25 points.

- 1. Define $F \colon \mathbb{R}^3 \to \mathbb{R}^2$ by $F(x, y, z) = (x^2 + y^2 2, z)$ and let $S^1 = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ be the unit circle. Show that $F^{-1}(S^1)$ is a smooth manifold and calculate its dimension.
- 2. Let V be a smooth vector field on \mathbb{R}^2 and assume that outside of a compact set $V = \frac{\partial}{\partial x}$ where $\frac{\partial}{\partial x}$ is the standard horizontal vector field. Show that the flow for V exists for all time.
- 3. Let M and N be submanifolds of \mathbb{R}^n and for all $a \in \mathbb{R}^n$ let $M_a = \{x + a \in \mathbb{R}^n | x \in M\}$. Show that M_a and N are transverse for almost all choices of $a \in \mathbb{R}^n$.
- 4. Find two 1-forms α and β on $\mathbb{R}^2 \{(0,0), (0,2)\}$ that are closed but not exact and have the property that $\alpha + t\beta$ is not exact for any $t \in \mathbb{R}$. (**Hint:** Let $\iota : S^1 \hookrightarrow \mathbb{R}^2$ be inclusion of S^1 into \mathbb{R}^2 . Then choose α and β such that

$$\int_{S^1} \iota^*(\alpha + t\beta) = \int_{S^1} \iota^*\alpha \neq 0.)$$

- 5. Let M be a smooth manifold and TM its tangent bundle. Show that TM is orientable.
- 6. Let G be an n-dimensional Lie group. Show that the tangent bundle TG is isomorphic as a bundle to the product bundle $G \times \mathbb{R}^n$.