University of Utah, Department of Mathematics

January 2023, Algebra Qualifying Exam
There are five problems on the exam. You may attempt as many problems as you wish; three correct solutions count as a high pass. 2 correct solutions count as a pass. Show all your work, and provide reasonable justification for your answers.

1. Let $k=\mathbb{Z} / 3 \mathbb{Z}$ be the field with three elements. Find all the prime ideals in the ring $R=k[x, y] /\left(x^{3}-x, y^{2}+x\right)$.
2. Let $k=\mathbb{Z} / 2 \mathbb{Z}$ and $R=k[x]$. Let M denote the cokernel of the map $R^{3} \longrightarrow R^{3}$ given by the matrix:

$$
\left[\begin{array}{ccc}
1+x & x^{2} & 1+x \\
1 & x & 1 \\
1 & x^{2} & 1+x^{2}
\end{array}\right]
$$

Write $\operatorname{Hom}(M, R /(x))$ as a direct sum of cyclic modules.
3. Let $R=(\mathbb{Z} / 3 \mathbb{Z})[x, y]$ and let $I=(x, 2 y)$. Compute the number of elements in $\operatorname{Ext}^{i}(R / I, R)$ for each $i \geq 0$.
4. Suppose R is a commutative ring and I is an ideal. Let

$$
J=\left\{x \in R \mid x^{n} \in I \text { for some integer } n>0\right\}
$$

Prove directly that J is an ideal of R.
5. Determine up to similarity, all real 5×5-matrices with characteristic polynomial $x\left(x^{2}+1\right)^{2}$.

