Probability Qualifying Exam

January 2023

Instructions (Read before you begin)

- You may attempt all 6 problems in this exam. However, you can turn in solutions for at most 4 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is 10 points; a pass is 30 points or higher; a high pass is 36 points or higher.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

1. Without using the Central Limit Theorem or the Law of the Iterated Logarithm, prove the Weak Law of Large Numbers when $X_{i} \in L^{1}$, i.e. show that when X_{1}, X_{2}, \ldots is a sequence of i.i.d. variables with $\mathbb{E}\left[X_{1}\right]=\mu$ and $X_{1} \in L^{1}$, then

$$
\bar{X}=\frac{X_{1}+\ldots+X_{n}}{n} \rightarrow \mu \quad \text { in } L^{1} .
$$

Hint: first, prove the claim when $X_{1} \in L^{2}$. Then for $a>0$, consider $X_{i}^{a}=X_{i} \cdot \mathbb{1}\left\{\left|X_{i}\right| \leq a\right\}$.
2. Let $\left\{A_{i}\right\}_{i=1}^{\infty}$ be a sequence of independent events such that $\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)=\infty$. Prove that the A_{n} occur infinitely often with probability 1 (the converse of the Borel-Cantelli Lemma), i.e. that $\sum_{i=1}^{\infty} 1_{A_{i}}=\infty$ almost surely.
3. Show that if $X_{n} \rightarrow X$ in probability, then $X_{n} \Rightarrow X$, i.e. X_{n} converges weakly to X.
4. Recall the inversion formula: if μ is a probability measure and $\widehat{\mu}$ is its characteristic function, then for all $a<b$:

$$
\lim _{T \rightarrow \infty} \frac{1}{2 \pi} \int_{-T}^{T} \int_{a}^{b} e^{-i t y} \widehat{\mu}(t) d y d t=\mu(a, b)+\frac{1}{2} \mu(\{a, b\}) .
$$

(a) Prove that if $\widehat{\mu} \in L^{1}$, then $\mu(\{a\})=0$ for all $a \in \mathbb{R}$ and μ has a probability density function given by

$$
f(y)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t y} \widehat{\mu}(t) d t
$$

(b) Show that if X_{1}, \ldots, X_{n} are independent and uniformly distributed on $(-1,1)$, then for $n \geq 2, X_{1}+\ldots+X_{n}$ has density

$$
f(y)=\frac{1}{\pi} \int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{n} \cos (t y) d t
$$

5. Prove that if $\left\{X_{i}\right\}_{i=1}^{\infty}$ are i.i.d. Uniform- $[0,1]$ random variables, then

$$
\frac{4 \sum_{i=1}^{n} i X_{i}-n^{2}}{n^{\frac{3}{2}}}
$$

converges weakly, and identify the limiting distribution. (Recall $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$ and $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.)
6. Let X_{n}, Y_{n} be positive, in L^{1}, and measurable with respect to the filtration \mathcal{F}_{n}. Suppose

$$
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \leq\left(1+Y_{n}\right) X_{n}
$$

with $\sum Y_{n}<\infty$ a.s.
(a) Show that $\prod_{i=1}^{n}\left(1+Y_{i}\right)$ converges a.s. to a finite limit.
(b) Show

$$
M_{n}=\frac{X_{n}}{\prod_{i=0}^{n-1}\left(1+Y_{i}\right)}
$$

is a super-martingale.
(c) Use (a) and (b) to prove that X_{n} converges a.s. to a finite limit.

