UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS Ph.D. Preliminary Examination in Differentiable Manifolds Jan 7, 2022.

Instructions. Answer as many questions as you can. Each question is worth 10 points. For a high pass you need to solve *completely* at least three problems and score at least 30 points. For a pass you need to solve *completely* at least two problems and score at least 25 points. Carefully state any theorems you use.

- 1. Let $X \subset \mathbb{R}^3$ be a smoothly embedded torus. Show that there is a plane $P \subset \mathbb{R}^3$ such that $X \cap P$ is a nonempty collection of circles.
- 2. Recall that the orthogonal group O(n) is

$$O(n) = \{ M \in \mathcal{M}_{n \times n} \mid M M^{\top} = I \}$$

where I is the identity matrix. Identifying the set $\mathcal{M}_{n \times n}$ of all real $n \times n$ matrices with \mathbb{R}^{n^2} , show that O(n) is a submanifold of $\mathcal{M}_{n \times n}$ and compute the tangent space to O(n) at I as a linear subspace of $T_I \mathcal{M}_{n \times n}$, which is identified with $\mathcal{M}_{n \times n}$.

- 3. In this problem you are allowed to use the fact that every closed 1-form on the 2-sphere S^2 is exact and every 2-form ω on S^2 such that $\int_{S^2} \omega = 0$ is exact. You are also allowed to use that $\int_{S^2} a^*(\omega) = -\int_{S^2} \omega$ for every 2-form ω on S^2 , where $a: S^2 \to S^2$ is the antipodal map. Consider the map $p: S^2 \to \mathbb{R}P^2$ that identifies the antipodal points. Show that all closed 1- and 2-forms on $\mathbb{R}P^2$ are exact by considering their pullbacks to S^2 and applying the above facts.
- 4. Find an explicit closed 1-form ω on $\mathbb{R}^2 \setminus \{0\}$ which is not exact, and prove both statements.
- 5. Find a nonintegrable plane field in \mathbb{R}^3 , with a proof.
- 6. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a smooth function such that f(0) = 0. Show that the graph of f

$$Gr(f) = \{(x, f(x)) \in \mathbb{R}^n \times \mathbb{R}^n\}$$

and the diagonal

$$\Delta = \{ (x, x) \in \mathbb{R}^n \times \mathbb{R}^n \}$$

intersect transversely at (0,0) in $\mathbb{R}^n \times \mathbb{R}^n$ if and only if the derivative $f_*(0): T_0\mathbb{R}^n \to T_0\mathbb{R}^n$ does not have +1 as an eigenvalue.