UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS
 Ph.D. Preliminary Examination in Differentiable Manifolds Jan 7, 2022.

Instructions. Answer as many questions as you can. Each question is worth 10 points. For a high pass you need to solve completely at least three problems and score at least 30 points. For a pass you need to solve completely at least two problems and score at least 25 points. Carefully state any theorems you use.

1. Let $X \subset \mathbb{R}^{3}$ be a smoothly embedded torus. Show that there is a plane $P \subset \mathbb{R}^{3}$ such that $X \cap P$ is a nonempty collection of circles.
2. Recall that the orthogonal group $O(n)$ is

$$
O(n)=\left\{M \in \mathcal{M}_{n \times n} \mid M M^{\top}=I\right\}
$$

where I is the identity matrix. Identifying the set $\mathcal{M}_{n \times n}$ of all real $n \times n$ matrices with $\mathbb{R}^{n^{2}}$, show that $O(n)$ is a submanifold of $\mathcal{M}_{n \times n}$ and compute the tangent space to $O(n)$ at I as a linear subspace of $T_{I} \mathcal{M}_{n \times n}$, which is identified with $\mathcal{M}_{n \times n}$.
3. In this problem you are allowed to use the fact that every closed 1-form on the 2 -sphere S^{2} is exact and every 2 -form ω on S^{2} such that $\int_{S^{2}} \omega=0$ is exact. You are also allowed to use that $\int_{S^{2}} a^{*}(\omega)=-\int_{S^{2}} \omega$ for every 2-form ω on S^{2}, where $a: S^{2} \rightarrow S^{2}$ is the antipodal map. Consider the $\operatorname{map} p: S^{2} \rightarrow \mathbb{R} P^{2}$ that identifies the antipodal points. Show that all closed 1 - and 2 -forms on $\mathbb{R} P^{2}$ are exact by considering their pullbacks to S^{2} and applying the above facts.
4. Find an explicit closed 1 -form ω on $\mathbb{R}^{2} \backslash\{0\}$ which is not exact, and prove both statements.
5. Find a nonintegrable plane field in \mathbb{R}^{3}, with a proof.
6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth function such that $f(0)=0$. Show that the graph of f

$$
G r(f)=\left\{(x, f(x)) \in \mathbb{R}^{n} \times \mathbb{R}^{n}\right\}
$$

and the diagonal

$$
\Delta=\left\{(x, x) \in \mathbb{R}^{n} \times \mathbb{R}^{n}\right\}
$$

intersect transversely at $(0,0)$ in $\mathbb{R}^{n} \times \mathbb{R}^{n}$ if and only if the derivative $f_{*}(0): T_{0} \mathbb{R}^{n} \rightarrow T_{0} \mathbb{R}^{n}$ does not have +1 as an eigenvalue.

