University of Utah, Department of Mathematics
 Algebra 1 Qualifying Exam January 2022

There are five problems on this exam. You may attempt as many problems as you wish; two correct solutions count as a pass, and three correct as a high pass. Show all your work, and provide reasonable justification for your answers.

1. Consider the ideal $I:=(2 x-9,3 x-7)$ in the ring $\mathbb{Z}[x]$. Find the smallest positive integer n such that

$$
\left(x^{26}+x+1\right)^{13}-n
$$

belongs to the ideal I.
2. Let R be a commutative ring with identity, and let $0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$ be an exact sequence of R modules. Prove or disprove:
(a) If M and N are finitely generated R-modules, then L is finitely generated.
(b) If M is finitely generated, and N is a free R-module, then L is finitely generated.
3. Let $R:=\mathbb{Q}[x] /\left(x^{3}-1\right)$. Give an example of a finitely generated projective R-module that is not free.
4. Let R be a commutative ring with identity such that $I J=I \cap J$ for all ideals I and J. Prove that each prime ideal of R is maximal.
5. Let M be a 5×5 matrix over the complex numbers \mathbb{C}, such that the eigenvectors of M, along with the zero vector, form a two-dimensional vector subspace of \mathbb{C}^{5}. Determine the possible Jordan forms of M.

