Probability Qualifying Exam

January 2022

Instructions (Read before you begin)

- You may attempt all 7 problems in this exam. However, you can turn in solutions for at most 4 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is 10 points; a pass is 30 points or higher; a high pass is 36 points or higher.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

- 1. Suppose $\{r_k\}_{k\in\mathbb{Z}_+}$ is a sequence of real numbers such that $n^{-1}\sum_{k=1}^n |r_k| \to 0$ as $k \to \infty$. Let $\{X_k\}_{k\in\mathbb{N}}$ be a sequence of L^2 random variables such that $E[X_k] = 0$ and $E[X_kX_\ell] \leq r_{\ell-k}$ for all $k \leq \ell$. Let $S_n = X_1 + \cdots + X_n$. Show that $n^{-1}S_n$ converges in L^2 as $n \to \infty$ and identify the limit.
- 2. Answer the following two questions.
 - (a) Let $\{X_n\}_{n\in\mathbb{N}}$ be independent, almost surely finite random variables. Show that

 $\sup_{n} X_n < \infty \text{ a.s. if, and only if, } \exists c < \infty \text{ such that } \sum_{n} \mathbb{P}(X_n > c) < \infty.$

(b) Let $\{A_n\}_{n\in\mathbb{N}}$ be a sequence of events with $P(A_n) \ge \delta$ for each *n*. Show that

 $P(A_n \text{ happens infinitely often }) \ge \delta.$

- 3. Consider a probability space (Ω, \mathcal{F}, P) . Let $X \in L^1$. Suppose $(\mathcal{F}_n)_{n \in \mathbb{N}}$ is an increasing sequence of σ -algebras such that $\bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ generates \mathcal{F} . Prove the Doob martingale convergence theorem that states that $\mathbb{E}[X | \mathcal{F}_n]$ converges almost surely to X.
- 4. Let u be an integrable Borel function on [0, 1) relative to the Lebesgue measure. For each $n \ge 1$ and $x \in [0, 1)$, let $I_n(x) = [k2^{-n}, (k+1)2^{-n})$ be the interval that contains x as k varies from 0 to $2^n - 1$. Show that for Lebesgue-a.e. x,

$$\lim_{n \to \infty} 2^n \int_{I_n(x)} u(y) \, dy = u(x).$$

(Hint: Cast this in a suitable martingale framework then use the result of problem 3.)

5. Fix an integer $n \ge 1$. Let $\{Y_k\}_{k \in \mathbb{N}}$ be i.i.d. uniform on $\{1, 2, ..., n\}$. Let

$$\sigma_n = \inf\{k \ge 2 : Y_k = Y_m \text{ for some } 1 \le m < k\}$$

be the first time we get a repeated sample. Find an exponent γ and a nondegenerate distribution μ such that, as $n \to \infty$, $n^{-\gamma}\sigma_n$ converges weakly to the distribution μ . (Hint: look at tail probabilities $P(n^{-\gamma}\sigma_n \ge x)$.)

- 6. Give an example of a sequence of independent random variables $\{Z_k\}_{k\in\mathbb{N}}$ satisfying $E[Z_k] = 0$, $Var(Z_k) = 1$, for each k, and such that $(Z_1 + \cdots + Z_n)/\sqrt{n}$ does not converge in distribution to a standard normal. Justify any claims you make.
- 7. Let $\{X_n\}_{n\in\mathbb{N}}$ be independent random variables such that for each n, X_n takes the values +1 and -1 with probability $(1-2^{-n})/2$ each and the value 2^k with probability 2^{-k} , for integers k > n.
 - (a) Show that $E[|X_n|] = \infty$ for all $n \in \mathbb{N}$.
 - (b) Show that $(X_1 + \dots + X_n)/\sqrt{n}$ converges in distribution to a standard normal. (Hint: Check that we can write $X_n = (1 - B_n)Y_n + 2^n B_n Z_n$, where B_n is Bernoulli (2^{-n}) , Y_n takes values ± 1 equally likely, Z_n takes the value 2^k with probability 2^{-k} , for $k \in \mathbb{N}$, and $\{B_n, Z_n, Y_n : n \ge 1\}$ are mutually independent. Now, X_n is a small perturbation of $(1 - B_n)Y_n$. Work out the details.)