Probability Qualifying Exam

January 2022

Instructions (Read before you begin)

- You may attempt all 7 problems in this exam. However, you can turn in solutions for at most 4 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is 10 points; a pass is 30 points or higher; a high pass is 36 points or higher.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

1. Suppose $\left\{r_{k}\right\}_{k \in \mathbb{Z}_{+}}$is a sequence of real numbers such that $n^{-1} \sum_{k=1}^{n}\left|r_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$. Let $\left\{X_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of L^{2} random variables such that $\mathrm{E}\left[X_{k}\right]=0$ and $\mathrm{E}\left[X_{k} X_{\ell}\right] \leqslant$ $r_{\ell-k}$ for all $k \leqslant \ell$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Show that $n^{-1} S_{n}$ converges in L^{2} as $n \rightarrow \infty$ and identify the limit.
2. Answer the following two questions.
(a) Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be independent, almost surely finite random variables. Show that
$\sup _{n} X_{n}<\infty$ a.s. if, and only if, $\exists c<\infty$ such that $\sum_{n} \mathrm{P}\left(X_{n}>c\right)<\infty$.
(b) Let $\left\{\stackrel{n}{A}_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of events with $\mathrm{P}\left(A_{n}\right) \geqslant \delta$ for ${ }_{n}^{n}$ each n. Show that

$$
\mathrm{P}\left(A_{n} \text { happens infinitely often }\right) \geqslant \delta .
$$

3. Consider a probability space $(\Omega, \mathcal{F}, \mathrm{P})$. Let $X \in L^{1}$. Suppose $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of σ-algebras such that $\cup_{n \in \mathbb{N}} \mathcal{F}_{n}$ generates \mathcal{F}. Prove the Doob martingale convergence theorem that states that $\mathrm{E}\left[X \mid \mathcal{F}_{n}\right]$ converges almost surely to X.
4. Let u be an integrable Borel function on $[0,1)$ relative to the Lebesgue measure. For each $n \geqslant 1$ and $x \in[0,1)$, let $I_{n}(x)=\left[k 2^{-n},(k+1) 2^{-n}\right)$ be the interval that contains x as k varies from 0 to $2^{n}-1$. Show that for Lebesgue-a.e. x,

$$
\lim _{n \rightarrow \infty} 2^{n} \int_{I_{n}(x)} u(y) d y=u(x)
$$

(Hint: Cast this in a suitable martingale framework then use the result of problem 3.)
5. Fix an integer $n \geqslant 1$. Let $\left\{Y_{k}\right\}_{k \in \mathbb{N}}$ be i.i.d. uniform on $\{1,2, \ldots, n\}$. Let

$$
\sigma_{n}=\inf \left\{k \geqslant 2: Y_{k}=Y_{m} \text { for some } 1 \leqslant m<k\right\}
$$

be the first time we get a repeated sample. Find an exponent γ and a nondegenerate distribution μ such that, as $n \rightarrow \infty, n^{-\gamma} \sigma_{n}$ converges weakly to the distribution μ. (Hint: look at tail probabilities $\mathrm{P}\left(n^{-\gamma} \sigma_{n} \geqslant x\right)$.)
6. Give an example of a sequence of independent random variables $\left\{Z_{k}\right\}_{k \in \mathbb{N}}$ satisfying $\mathrm{E}\left[Z_{k}\right]=0, \operatorname{Var}\left(Z_{k}\right)=1$, for each k, and such that $\left(Z_{1}+\cdots+Z_{n}\right) / \sqrt{n}$ does not converge in distribution to a standard normal. Justify any claims you make.
7. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be independent random variables such that for each n, X_{n} takes the values +1 and -1 with probability $\left(1-2^{-n}\right) / 2$ each and the value 2^{k} with probability 2^{-k}, for integers $k>n$.
(a) Show that $\mathrm{E}\left[\left|X_{n}\right|\right]=\infty$ for all $n \in \mathbb{N}$.
(b) Show that $\left(X_{1}+\cdots+X_{n}\right) / \sqrt{n}$ converges in distribution to a standard normal. (Hint: Check that we can write $X_{n}=\left(1-B_{n}\right) Y_{n}+2^{n} B_{n} Z_{n}$, where B_{n} is Bernoulli $\left(2^{-n}\right)$, Y_{n} takes values ± 1 equally likely, Z_{n} takes the value 2^{k} with probability 2^{-k}, for $k \in \mathbb{N}$, and $\left\{B_{n}, Z_{n}, Y_{n}: n \geqslant 1\right\}$ are mutually independent. Now, X_{n} is a small perturbation of $\left(1-B_{n}\right) Y_{n}$. Work out the details.)

