UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS Ph.D. Preliminary Examination in Differentiable Manifolds January, 2021.

Instructions. Answer as many questions as you can. Each question is worth 10 points. For a high pass you need to solve *completely* at least three problems and score at least 30 points. For a pass you need to solve *completely* at least two problems and score at least 25 points.

1. View the 2-torus as

$$T^{2} = \{(z, w) \in \mathbb{C}^{2} \mid |z| = |w| = 1\}$$

and let $f: T^2 \to T^2$ be defined by

$$f(z,w) = (z^2, w^2)$$

Prove that f is not homotopic to the identity.

- 2. Let $M \subset \mathbb{R}^3$ be a submanifold diffeomorphic to the circle. Prove that for every $\epsilon > 0$ there is a vector $v \in \mathbb{R}^3$ of norm $< \epsilon$ such that M and $M + v = \{x + v \mid x \in M\}$ are disjoint. Carefully state any theorems you are citing.
- 3. Let ω and η be two differential forms on a manifold M.
 - (a) Define the wedge product $\omega \wedge \eta$.
 - (b) Prove that if ω and η are both closed then so is $\omega \wedge \eta$.
 - (c) Prove that the de Rham cohomology class of $\omega \wedge \eta$ is unchanged if ω and η are replaced by different representatives of the same cohomology classes.

You are allowed to use the identity relating exterior differentiation and wedge product, but you should state it carefully.

- 4. Let $f : \mathbb{R}^3 \to \mathbb{R}^2$ be the function f(x, y, z) = (xy, z) and let $\omega = dx \wedge dy$ be the area form on \mathbb{R}^2 . Compute the pull-back $f^*(\omega)$.
- 5. Define two vector fields V and W on \mathbb{R}^3 as follows: at p = (a, b, c) let $V(p) = \frac{\partial}{\partial x} + b \frac{\partial}{\partial z}$ and $W(p) = \frac{\partial}{\partial y}$. Prove that there is no nonempty surface $S \subset \mathbb{R}^3$ such that both V and W are tangent to S at each of its points.

- 6. Let $\mathcal{M}(n)$ denote the space of all $n \times n$ matrices with real entries, identified with \mathbb{R}^{n^2} , and let $\mathcal{S}(n)$ be the subspace of symmetric matrices. Consider the smooth map $F : \mathcal{M}(n) \to \mathcal{S}(n)$ defined by $f(A) = AA^{\top}$, where A^{\top} is the transpose of A.
 - (a) Show that the identity matrix I is a regular value of f.
 - (b) Deduce that the orthogonal group

$$O(n) = \{ A \in \mathcal{M}(n) \mid AA^{\top} = I \}$$

is a submanifold of $\mathcal{M}(n)$. Carefully state any theorems you are citing.