UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS Ph.D. Preliminary Examination in Real Analysis January, 2021.

Instructions. Answer as many questions as you can. Each question is worth 10 points. For a high pass you need to solve *completely* at least three problems and score at least 30 points. For a pass you need to solve *completely* at least two problems and score at least 25 points.

1. Let μ be the outer measure on \mathbb{R} defined by

$$\mu(A) = \inf\left\{\sum_{i=1}^{\infty} (b_i - a_i) \mid A \subseteq \bigcup_{i=1}^{\infty} (a_i, b_i], a_i \le b_i\right\}$$

for every $A \subset \mathbb{R}$. Prove that $\mu((a, b]) = b - a$. You may use that the length of a segment covered by finitely many segments is less than or equal to the sum of the lengths of segments in the covering.

- 2. (a) State the Monotone Convergence Theorem.
 - (b) Let $f : [0, \infty) \to \mathbb{R}$ defined by $f(x) = e^{-x}$. Explain why f is Lebesgue integrable and compute its integral. You may use the fact that if a function $f : [0, \infty) \to \mathbb{R}$ is 0 outside an interval [a, b]and $f|[a, b] : [a, b] \to \mathbb{R}$ is Riemann integrable then f is Lebesgue integrable and the Lebesgue integral of f equals the Riemann integral of f|[a, b].
- 3. Let a measure space (X, \mathcal{M}, μ) be given and for a fixed measurable function $f: X \to [0, \infty)$ define a new measure λ on \mathcal{M} by

$$\lambda(E) = \int_E f \ d\mu$$

You don't have to prove that λ is a measure. Prove that for any measurable $g: X \to [0, \infty)$

$$\int g \ d\lambda = \int gf \ d\mu$$

- 4. (a) State the Closed Graph Theorem.
 - (b) Let $T: U \to V$ be a linear map between two Banach spaces such that, for any bounded linear functional f on V, the composite $f \circ T$ is a bounded functional on U. Prove that T is bounded. You may use the fact that bounded linear functionals on a Banach space separate points.
- 5. (a) State the Baire Category Theorem.
 - (b) Let V be a Banach space, and $T: V \to V$ a bounded linear map. Assume that for every $v \in V$ there exists a non-negative integer n such that $T^n(v) = 0$. Prove that there exists an integer n such that $T^n(v) = 0$ for all $v \in V$.
- 6. (a) Give the definition of what it means for a sequence (x_n) in a Banach space X to converge weakly to $x \in X$.
 - (b) Let X = [0, 1] equipped with the Lebesgue measure. For $n = 1, 2, ..., let f_n = n \cdot \chi_{[0,1/n]}$, where χ_A denotes the indicator function for the set A. Prove that the sequence f_n does not converge weakly to 0 in $L^1([0, 1)]$.