University of Utah, Department of Mathematics

Algebra 2 Qualifying Exam

August 2021

There are five problems on this exam. You may attempt as many problems as you wish; two correct solutions count as a pass, and three correct as a high pass. Show all of your work and provide reasonable justification for your answers.

1. Find a degree 5 monic polynomial with integer coefficients that is irreducible in $\mathbb{Q}[x]$ but does not satisfy the Eisenstein criterion for any prime p.
2. Find a non-abelian finite subgroup of $\mathrm{GL}_{2}(\mathbb{C})$ that is not conjugate to a finite subgroup of $\mathrm{GL}_{2}(\mathbb{Z})$. Here for a ring $R, \mathrm{GL}_{2}(R)$ denotes the group of invertible 2×2 matrices with entries in R.
3. Find a complex number η such that $\mathbb{Q}(\eta) / \mathbb{Q}$ is Galois with Galois group isomorphic to the dihedral group of order 8.
4. For p a prime number, show that $x^{p^{n}}-x \in \mathbb{F}_{p}[x]$ is the product of all irreducible polynomials of degree dividing n in $\mathbb{F}_{p}[x]$.
5. Is every group of order 480 solvable?
