University of Utah, Department of Mathematics Algebra 1 Qualifying Exam August 2021

There are five problems on this exam. You may attempt as many problems as you wish; two correct solutions count as a *pass*, and three correct as a *high pass*. Show all your work, and provide reasonable justification for your answers.

1. Consider the ring homomorphism given by

$$\mathbb{Z}[x] \longrightarrow \mathbb{Q}$$
$$f(x) \longmapsto f(1/2)$$

Determine a minimal generating set for the kernel.

2. Let $R := \mathbb{Q}[x]$, and let *M* be the cokernel of the map

$$R^{3} \xrightarrow{\begin{pmatrix} x-2 & 4 & x \\ 0 & 4 & x \\ 0 & -x & -1 \end{pmatrix}} R^{3}.$$

Write *M* as a direct sum of cyclic *R*-modules.

- 3. Prove that $\mathbb{C}[x]$ is integrally closed in $\mathbb{C}(x)$, the field of rational functions.
- 4. Let *I* be the ideal $(2, 1 + \sqrt{-5})$ in the ring $R := \mathbb{Z}[\sqrt{-5}]$, and let $\Lambda^2(I)$ denote the second exterior power of *I* in the category of *R*-modules. Prove or disprove: $\Lambda^2(I)$ is zero.
- 5. Let *R* be a commutative ring. Let *P* and *Q* be two projective *R*-modules. Prove that $P \otimes_R Q$ is projective.