University of Utah, Department of Mathematics
 Algebra 1 Qualifying Exam
 August 2021

There are five problems on this exam. You may attempt as many problems as you wish; two correct solutions count as a pass, and three correct as a high pass. Show all your work, and provide reasonable justification for your answers.

1. Consider the ring homomorphism given by

$$
\begin{aligned}
& \mathbb{Z}[x] \longrightarrow \quad \mathbb{Q} \\
& f(x) \longmapsto f(1 / 2)
\end{aligned}
$$

Determine a minimal generating set for the kernel.
2. Let $R:=\mathbb{Q}[x]$, and let M be the cokernel of the map

$$
R^{3} \xrightarrow{\left(\begin{array}{ccc}
x-2 & 4 & x \\
0 & 4 & x \\
0 & -x & -1
\end{array}\right)} R^{3} .
$$

Write M as a direct sum of cyclic R-modules.
3. Pro ve that $\mathbb{C}[x]$ is integrally closed in $\mathbb{C}(x)$, the field of rational functions.
4. Let I be the ideal $(2,1+\sqrt{-5})$ in the ring $R:=\mathbb{Z}[\sqrt{-5}]$, and let $\Lambda^{2}(I)$ denote the second exterior power of I in the category of R-modules. Prove or disprove: $\Lambda^{2}(I)$ is zero.
5. Let R be a commutative ring. Let P and Q be two projective R-modules. Prove that $P \otimes_{R} Q$ is projective.

