Probability Qualifying Exam

August 2021

Instructions (Read before you begin)

- You may attempt all 6 problems in this exam. However, you can turn in solutions for at most 4 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is 10 points; a pass is 30 points or higher; a high pass is 36 points or higher.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

1. Let X, Y, Z be random variables on some probability space. Recall that

$$
\mathrm{P}(X \in A \mid Y, Z)=\mathrm{P}(X \in A \mid \sigma\{Y, Z\})
$$

is the conditional expectation of the indicator function of the event $\{X \in A\}$, given the σ-algebra $\sigma\{Y, Z\}$ generated by Y and Z. We say that X and Y are independent, given Z, if for all Borel sets $A, B \subset \mathbb{R}$,

$$
\mathrm{P}(X \in A, Y \in B \mid Z)=\mathrm{P}(X \in A \mid Z) \cdot \mathrm{P}(Y \in B \mid Z) \quad \mathrm{P} \text {-almost surely. }
$$

Show that this condition is equivalent to having

$$
\mathrm{P}(X \in A \mid Y, Z)=\mathrm{P}(X \in A \mid Z) \quad \mathrm{P} \text {-almost surely, for all Borel sets } A \text {. }
$$

2. Let Y_{k} be i.i.d., $Y_{k} \geqslant 0$, and $\mathrm{E}\left[Y_{k}\right] \leqslant 1$ for all k. Prove the existence of the almost sure limit $M_{\infty}=\lim _{n \rightarrow \infty} \prod_{i=1}^{n} Y_{i}$ and describe this random variable explicitly. Do not forget the degenerate cases.
3. Let $\left\{\mathcal{F}_{n}\right\}_{n \geqslant 0}$ be a filtration on the probability space $(\Omega, \mathcal{F}, \mathrm{P})$, let $X \in L^{1}(\Omega, \mathcal{F}, \mathrm{P})$, and define $M_{n}=\mathrm{E}\left[X \mid \mathcal{F}_{n}\right]$. Let τ be a stopping time and recall the definition

$$
\mathcal{F}_{\tau}=\left\{A \in \mathcal{F}: A \cap\{\tau=n\} \in \mathcal{F}_{n} \forall n \geqslant 0\right\} .
$$

(a) Show that $1\{\tau<\infty\} M_{\tau}$ is integrable.
(b) Show that $\mathrm{E}\left[X \mid \mathcal{F}_{\tau}\right]=\mathbf{1}\{\tau<\infty\} M_{\tau}+\mathbf{1}\{\tau=\infty\} X$. Do not forget the necessary measurability condition.
4. Answer the following questions.
(a) State the definition of convergence in probability. Using only this definition, show that $X_{n} \rightarrow X$ in probability if and only if $\mathrm{E}\left[1 \wedge\left|X_{n}-X\right|\right] \rightarrow 0$. Do not appeal to any theorems that trivialize the problem.
(b) State the definition of almost sure convergence. Prove that if $X_{n} \rightarrow X$ almost surely, then $X_{n} \rightarrow X$ in probability. Again, do not appeal to any theorems that trivialize the problem.
5. Let $\left\{X_{n}\right\}_{n \geqslant 1}$ be i.i.d. with mean 0 and variance 1 . Let $\left\{a_{n}\right\}_{n \geqslant 1}$ be a sequence of nonzero real numbers and $A_{n}=\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{1 / 2}$. Assume that

$$
A_{n}^{-1}\left(\max _{1 \leqslant k \leqslant n}\left|a_{k}\right|\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Find (and prove) a distributional limit for $A_{n}^{-1} \sum_{k=1}^{n} a_{k} X_{k}$ as $n \rightarrow \infty$.
6. Let $\left\{X_{n}\right\}_{n \geqslant 1}$ be i.i.d. Normal random variables with mean 0 and variance 1. Let $S_{0}=0$ and $S_{n}=X_{1}+\cdots+X_{n}$ for $n \geqslant 1$. Fix $t \in \mathbb{R}$ and for $n \geqslant 0$ let $M_{n}=e^{t S_{n}-t^{2} n / 2}$.
(a) Prove that M_{n} is a mean one martingale relative to the filtration $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.
(b) Prove that if $\max _{j \leqslant n} S_{j} \geqslant n t$, then $\max _{j \leqslant n} M_{j} \geqslant e^{t^{2} n / 2}$.
(c) Conclude that $\mathrm{P}\left\{\max _{j \leqslant n} S_{j} \geqslant n t\right\} \leqslant e^{-t^{2} n / 2}$ and then that for any $c>\theta>1$ we have with probability one: $\exists k_{0} \geqslant 1$ such that for $k \geqslant k_{0}$

$$
\frac{\max _{j \leqslant \theta^{k}} S_{j}}{\sqrt{2 c \theta^{k-1} \log \log \theta^{k-1}}} \leqslant 1 .
$$

(d) Deduce that almost surely

$$
\varlimsup_{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}} \leqslant 1
$$

