Probability Qualifying Exam

August 2021

Instructions (Read before you begin)

- You may attempt all 6 problems in this exam. However, you can turn in solutions for at most 4 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is 10 points; a pass is 30 points or higher; a high pass is 36 points or higher.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 6040 text, then you need to carefully state and prove that result.

Exam Problems:

1. Let X, Y, Z be random variables on some probability space. Recall that

$$P(X \in A \mid Y, Z) = P(X \in A \mid \sigma\{Y, Z\})$$

is the conditional expectation of the indicator function of the event $\{X \in A\}$, given the σ -algebra $\sigma\{Y, Z\}$ generated by Y and Z. We say that X and Y are independent, given Z, if for all Borel sets $A, B \subset \mathbb{R}$,

$$P(X \in A, Y \in B | Z) = P(X \in A | Z) \cdot P(Y \in B | Z)$$
 P-almost surely.

Show that this condition is equivalent to having

 $P(X \in A | Y, Z) = P(X \in A | Z)$ P-almost surely, for all Borel sets A.

- 2. Let Y_k be i.i.d., $Y_k \ge 0$, and $\mathbb{E}[Y_k] \le 1$ for all k. Prove the existence of the almost sure limit $M_{\infty} = \lim_{n \to \infty} \prod_{i=1}^{n} Y_i$ and describe this random variable explicitly. Do not forget the degenerate cases.
- 3. Let $\{\mathcal{F}_n\}_{n\geq 0}$ be a filtration on the probability space $(\Omega, \mathcal{F}, \mathbf{P})$, let $X \in L^1(\Omega, \mathcal{F}, \mathbf{P})$, and define $M_n = \mathbb{E}[X | \mathcal{F}_n]$. Let τ be a stopping time and recall the definition

$$\mathcal{F}_{\tau} = \left\{ A \in \mathcal{F} : A \cap \{\tau = n\} \in \mathcal{F}_n \ \forall n \ge 0 \right\}.$$

(a) Show that $\mathbf{1}\{\tau < \infty\}M_{\tau}$ is integrable.

(b) Show that $E[X | \mathcal{F}_{\tau}] = \mathbf{1}\{\tau < \infty\}M_{\tau} + \mathbf{1}\{\tau = \infty\}X$. Do not forget the necessary measurability condition.

4. Answer the following questions.

(a) State the definition of convergence in probability. Using only this definition, show that $X_n \to X$ in probability if and only if $E[1 \land |X_n - X|] \to 0$. Do not appeal to any theorems that trivialize the problem.

(b) State the definition of almost sure convergence. Prove that if $X_n \to X$ almost surely, then $X_n \to X$ in probability. Again, do not appeal to any theorems that trivialize the problem.

5. Let $\{X_n\}_{n \ge 1}$ be i.i.d. with mean 0 and variance 1. Let $\{a_n\}_{n \ge 1}$ be a sequence of nonzero real numbers and $A_n = \left(\sum_{k=1}^n a_k^2\right)^{1/2}$. Assume that

$$A_n^{-1}(\max_{1 \le k \le n} |a_k|) \to 0 \text{ as } n \to \infty.$$

Find (and prove) a distributional limit for $A_n^{-1} \sum_{k=1}^n a_k X_k$ as $n \to \infty$.

- 6. Let $\{X_n\}_{n \ge 1}$ be i.i.d. Normal random variables with mean 0 and variance 1. Let $S_0 = 0$ and $S_n = X_1 + \cdots + X_n$ for $n \ge 1$. Fix $t \in \mathbb{R}$ and for $n \ge 0$ let $M_n = e^{tS_n - t^2 n/2}$.
 - (a) Prove that M_n is a mean one martingale relative to the filtration $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$.
 - (b) Prove that if $\max_{j \leq n} S_j \geq nt$, then $\max_{j \leq n} M_j \geq e^{t^2 n/2}$.

(c) Conclude that $P\{\max_{j \leq n} S_j \geq nt\} \leq e^{-t^2 n/2}$ and then that for any $c > \theta > 1$ we have with probability one: $\exists k_0 \geq 1$ such that for $k \geq k_0$

$$\frac{\max_{j \leqslant \theta^k} S_j}{\sqrt{2c\theta^{k-1}\log\log\theta^{k-1}}} \leqslant 1.$$

(d) Deduce that almost surely

$$\overline{\lim_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log n}}} \leqslant 1.$$