Statistics Prelim Exam
 University of Utah
 Department of Mathematics

January 2020

Read the following instructions before you begin:

- You may attempt all of 10 problems in this exam. On the outside of your exam booklet, indicate which problems you are turning in and want graded.
- Each problem is worth 10 points; 60 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your $5080-5090 / 6010$ texts, then you need to carefully state that result.

Exam problems begin here:

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identically distributed random variables with density function

$$
f(t, \theta)=\left\{\begin{array}{l}
0, \quad \text { if } \quad t<0 \\
\frac{1}{\theta} e^{-t / \theta}, \quad \text { if } \quad t \geq 0
\end{array}\right.
$$

Let $\alpha>0$ and

$$
\tau=\frac{1}{\theta^{\alpha}} .
$$

(a) How big n should be (as a function of α) so that τ has uniformly minimum variance unbiased estimator?
(b) Find the uniformly minimum variance unbiased estimator for τ (you need to justify that your estimator has the required property).
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identically distributed random variables with density function

$$
f(t, \theta)=\left\{\begin{array}{lll}
0, & \text { if } & t \notin[-\theta, \theta] \\
\frac{5 t^{4}}{2 \theta^{5}}, & \text { if } & -\theta \leq t \leq \theta
\end{array}\right.
$$

Find the maximum likelihood estimator for θ and compute its bias.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identically distributed random variables with density function

$$
f(t, \theta)= \begin{cases}0, & \text { if } \\ \frac{10 t^{9}}{2 \theta^{10}}, & \text { if } \quad-\theta \leq-\theta, \theta] \\ \frac{1}{2} \leq \theta\end{cases}
$$

Find a moment estimator for θ.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identically distributed random variables with density function

$$
f(t \theta)=\frac{1}{2} e^{-|t-\theta|}, \quad-\infty<t<\infty .
$$

The parameter θ could be any real number. Find all maximum likelihood estimators for θ.
5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid with the same pdf as in question 5. Find the form of the rejection region coming from the generalized likelihood ratio test for $H_{0}: \theta=\theta_{0}$ versus $H_{a}: \theta \neq \theta_{0}$.
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identically distributed random variables that have the uniform distribution on $[0,1]$. Let $X_{1, n} \leq X_{2, n} \leq \ldots \leq X_{n, n}$ be the order statistics. Let $k \geq 1$ be a fixed integer. Show that

$$
Y_{n}=n X_{k, n}
$$

converges in distribution and compute the limiting distribution.
7. Let X and Y be independent identically distributed random variables with density function

$$
f(t, \theta)=\left\{\begin{array}{l}
0, \quad \text { if } \quad t<0 \\
\frac{1}{\theta} e^{-t / \theta}, \quad \text { if } \quad t \geq 0
\end{array}\right.
$$

Compute the density function of

$$
Z=\frac{X}{X+Y}
$$

8. Let $X_{1}, \ldots, X_{n} \sim N\left(\mu_{1}, 1\right)$ and $Y_{1}, \ldots, Y_{m} \sim N\left(\mu_{2}, 1\right)$, where all random variables are independent. Derive the likelihood ratio test for

$$
H_{0}: \mu_{1}^{2}=\mu_{2}^{2} \quad \text { vs. } H_{a}: \mu_{1}^{2} \neq \mu_{2}^{2}
$$

What is the distribution of the test statistic?
9. Suppose a box contains 6 marbles in total. Suppose θ of them are white and $6-\theta$ of them are black. Test $H_{0}: \theta=2$ against $H_{a}: \theta \neq 2$ as follows: draw two marbles without replacement and reject H_{0} if both marbles are the same color, otherwise do not reject. What is the probability of Type II error for each of the alternatives $\theta=1$ and $\theta=3$?
10. Let X_{1}, \ldots, X_{n} be iid random variables. The density function of X_{i} is

$$
g\left(t ; \theta_{i}\right)=\theta_{i} t^{-\theta_{i}-1} \mathbf{1}\{t \geq 1\}
$$

Here $\theta_{i}>0$ is an unknown parameter. We wish to test

$$
H_{0}: \theta_{1}=\theta_{2}=\ldots=\theta_{n}
$$

against the alternative that H_{0} is not true. Find a test using the generalized likelihood ratio.

