Statistics Prelim Exam University of Utah Department of Mathematics

January 2018

Read the following instructions before you begin:

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problems you are turning in.
- Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 5080-5090/6010 texts, then you need to carefully state that result.

Exam problems begin here:

1. Let X_{1}, X_{2} be iid with density

$$
f(x ; \theta)= \begin{cases}3 x^{2} / \theta^{3}, & 0<x<\theta \\ 0, & \text { otherwise }\end{cases}
$$

Find a complete, sufficient statistic for $\theta \in[0, \infty)$ based on X_{1} and X_{2}.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid random variables with a $\operatorname{Beta}(\theta, \theta)$ distribution, i.e. their density is

$$
f(x ; \theta)=\frac{\Gamma(2 \theta)}{\Gamma(\theta)^{2}} x^{\theta-1}(1-x)^{\theta-1}, \quad 0<x<1
$$

Show that a best critical region for testing $H_{0}: \theta=1$ versus $H_{A}: \theta=2$ is

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): c \leq \prod_{i=1}^{n} x_{i}\right\}
$$

3. A particular gene occurs as one of two alleles $(A$ and $a)$, with allele A having frequency θ in the population. In other words, a random copy of the gene is A with probability θ and a with probability $1-\theta$. A diploid genotype is just two genes put together (in any particular order) so the probability of each diploid genotype is θ^{2} for $A A, 2 \theta(1-\theta)$ for $A a$, and $(1-\theta)^{2}$ for $a a$. Suppose we test a random sample of people and find that k_{1} of them are $A A, k_{2}$ of them are $A a$, and k_{3} of them are $a a$. Find the MLE of θ.
4. Let X_{1}, X_{2}, X_{3} be iid and distributed according to $f(x)=2 x, 0<x<1$. Let $X_{(1)}<X_{(2)}<X_{(3)}$ be the order statistics. Compute the probability that the smallest of the X_{i} exceeds the median of the distribution.
5. Let X be discrete taking values in $\{0,1\}$ and have the pdf $f(x ; \theta)=\theta^{x}(1-\theta)^{1-x}$ for $x \in\{0,1\}$. We test the simple hypothesis $H_{0}: \theta=1 / 4$ agains the alternative composite hypothesis $H_{A}: \theta<1 / 4$ by taking a random sample of size 10 and rejecting H_{0} if and only if the observed values x_{1}, \ldots, x_{10} satisfy

$$
\sum_{i=1}^{10} x_{i} \leq 1
$$

Find the power function $K(\theta)$ of this test for $0 \leq \theta \leq 1 / 4$.
6. Consider the density function

$$
p(x ; \alpha, \lambda)=\left(2 \pi x^{3}\right)^{-3 / 2} \exp \left\{(\alpha \lambda)^{1 / 2}-\frac{1}{2} \log \lambda-\frac{1}{2} \alpha x-\frac{\lambda}{2} x^{-1}\right\}, \quad 0<x<\infty
$$

Given $X_{1}, X_{2}, \ldots, X_{n}$ iid from this density find a sufficient statistic (that involves all of the X_{i}) for the parameters $(\alpha / 2, \lambda / 2)$.
7. Suppose that X_{1}, \ldots, X_{n} form a random sample from a distribution for which the pdf $f\left(x \mid \theta_{1}, \theta_{2}\right)$ is as follows:

$$
f\left(x \mid \theta_{1}, \theta_{2}\right)= \begin{cases}\frac{1}{\theta_{2}-\theta_{1}}, & \theta_{1}<x<\theta_{2} \\ 0, & \text { otherwise }\end{cases}
$$

The values of θ_{1} and θ_{2} are unknown, other than $-\infty<\theta_{1}<\theta_{2}<\infty$. Find their MLEs.
8. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid with a Poisson (θ) distribution, so that their common probability mass function is

$$
\mathbb{P}\left(X_{i}=k\right)=e^{-\theta} \frac{\theta^{k}}{k!}, \quad k=0,1,2, \ldots, \theta>0
$$

Find the UMVUE of $e^{-\theta}$.
9. A food processing company packages honey in glass jars. Each jar is supposed to contain 10 fluid ounces of honey. Previous experience suggests that the volume of a randomly selected jar of honey is normally distributed with a known variance of 2 ounces. At a significance level of $\alpha=.05$ derive the likelihood ratio test for testing the null hypothesis $H_{0}: \mu=10$ versus $H_{A}: \mu \neq 10$.
10. Let $X_{1}, X_{2}, \ldots, X_{25}$ denote a random sample of size 25 from a $\mathrm{N}(\theta, 100)$ distribution. Find a uniformly most powerful critical region of size $\alpha=.10$ for testing $H_{0}: \theta=75$ against $H_{A}: \theta>75$.

