Statistics Prelim Exam University of Utah Department of Mathematics

August 2016

Read the following instructions before you begin:

- You may attempt all of 10 problems in this exam. However, you can turn in solutions for at most 6 problems. On the outside of your exam booklet, indicate which problem you are turning in.
- Each problem is worth 10 points; 40 points or higher will result in a pass.
- If you think that a problem is misstated, then interpret that problem in such a way as to make it nontrivial.
- If you wish to quote a result that was not in your 5080-5090/6010 texts, then you need to carefully state that result.

Exam problems begin here:

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid with common pdf $f(x)=2 x, 0<x<1$ and zero elsewhere. Find the limiting distribution of $n\left(1-X_{(n)}\right)$, where $X_{(n)}=$ $\max \left\{X_{1}, \ldots, X_{n}\right\}$ 。
2. Let $X_{1} \sim N(0,4 \theta), X_{2} \sim N(0,9 \theta), X_{3} \sim N\left(0,4 \theta^{2}\right), X_{4} \sim N\left(0,12 \theta^{2}\right)$, and assume that all X s are independent of each other. Using all four X variables and the t distribution, compute a $100(1-\alpha) \%$ confidence interval for θ.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid with common pdf

$$
f(x ; \theta)=\frac{1}{2 \theta} e^{-|x| / \theta}, \quad-\infty<x<\infty
$$

with θ unknown but positive. Compute the Cramer-Rao lower bound for the variance of an unbiased estimator of θ, and extend your calculation to finding the UMVUE by finding a linear combination of

$$
\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f\left(X_{i} ; \theta\right)
$$

that is unbiased.
4. If a random sample of size n is taken from a distribution having pdf $f(x ; \theta)=2 x / \theta^{2}, 0<x \leq \theta$ and zero elsewhere, find:
(a) the MLE $\hat{\theta}$ for θ,
(b) the constant c so that $\mathrm{E}[c \hat{\theta}]=\theta$,
(c) the MLE for the median of the distribution.
5. If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution having pdf of the form $f(x ; \theta)=\theta x^{\theta-1}, 0<x<1$ and zero elsewhere, show that a best critical region for testing $H_{0}: \theta=1$ against $H_{1}: \theta=2$ is

$$
C=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): c \leq \prod_{i=1}^{n} x_{i}\right\}
$$

6. Let $X_{1}, X_{2}, \ldots, X_{25}$ denote a random sample of size 25 from a normal distribution with mean θ and variance 100. Find a uniformly most powerful critical region of size $\alpha=0.10$ for testing $H_{0}: \theta=75$ against $H_{1}: \theta>75$.
7. Let X_{1} and X_{2} be two independent random variables. Suppose that X_{1} is $\chi^{2}\left(r_{1}\right)$ and $X_{1}+X_{2}$ is $\chi^{2}(r)$, where r_{1}, r are the respective degrees of freedom and $r_{1}<r$. Show that X_{2} is $\chi^{2}\left(r-r_{1}\right)$.
8. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent random variables, each with the $N\left(\beta x_{i}, \gamma^{2} x_{i}^{2}\right)$ distribution, where the numbers $x_{1}, x_{2}, \ldots, x_{n}$ are known, not all are equal, and none of them is zero. Suppose β and γ are unknown. Find the maximum likelihood estimators of β and γ^{2}.
9. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{Gamma}(\alpha, \theta)$ distribution, with α known and θ unknown. Find the Fisher information of this distribution and show that the MLE of θ is an efficient estimator of θ.
10. Suppose that an engineer wishes to compare the number of complaints per week filed by union stewards for two different shifts at a manufacturing plant. It is known that the number of complaints per week on the i th shift has a Poisson distribution with mean θ_{i} for $i=1,2$. One hundred independent observations on the number of complaints gave means $\bar{x}=20$ for shift 1 and $\bar{y}=22$ for shift 2 . Using this data test $H_{0}: \theta_{1}=\theta_{2}$ versus $H_{1}: \theta_{1} \neq \theta_{2}$ by the likelihood ratio method, with $\alpha=0.01$. (Hint: First find the likelihood ratio test statistic for λ and then use the distribution of $-2 \log \lambda$.)
