Statistics Qualifying Exam

January, 2010

You need to correctly solve 8 of the following problems to guarantee a "pass".

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent, identically distributed random variables with distribution function

$$
F(t)= \begin{cases}0, & \text { if }-\infty<t<0 \\ t^{3}, & \text { if } 0 \leq t \leq 1 \\ 1, & \text { if } t>0\end{cases}
$$

Show that

$$
Y_{n}=n^{1 / 3} X_{1, n}
$$

converges in distribution, where $X_{1, n}=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identically distributed random variables with density function

$$
h(t, \theta)= \begin{cases}0, & \text { if } t \notin[-\theta, \theta] \\ \frac{5}{2} \theta^{-5} t^{4} & \text { if }-\theta \leq t \leq \theta\end{cases}
$$

Find a moment estimator for θ.
3. Let X_{1}, \ldots, X_{n} be independent, identically distributed random variables with density function

$$
h(t, \theta)= \begin{cases}0, & \text { if }-\infty<t<0 \\ \theta(t+1)^{-\theta-1} & \text { if } 0 \leq t<\infty\end{cases}
$$

$\theta>0$.
(a) Find the maximum likelihood estimator for θ.
(b) Is the estimator unbiased?
(c) Find the asymptotic variance of the maximum likelihood estimator for θ.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identically distributed random variables with density function

$$
h(t, \theta)= \begin{cases}0, & \text { if } t \notin[0, \theta] \\ 2 \theta^{-2} t & \text { if } 0 \leq t \leq \theta\end{cases}
$$

Find the uniformly minimum variance unbiased estimator for θ. Explain your answer. You need to prove directly that the sufficient statistic is also complete in this case.
5. Let X and Y be two independent random variables with density functions

$$
f(t)= \begin{cases}0, & \text { if } t \notin[0,4] \\ 1 / 4, & \text { if } 0 \leq t \leq 4\end{cases}
$$

and

$$
h(t)= \begin{cases}0, & \text { if }-\infty<t<0 \\ 2 e^{-2 t} & \text { if } 0 \leq t<\infty\end{cases}
$$

Compute the density of $X-Y$.
6. Let X_{1} and X_{2} be independent random variables. The density function function of X_{1} is

$$
f(t)= \begin{cases}0, & \text { if } t \notin[0,1] \\ \frac{e^{t}}{e-1} & \text { if } 0 \leq t \leq 1\end{cases}
$$

The distribution of X_{2} is

$$
P\left\{X_{2}=1\right\}=p \quad \text { and } \quad P\left\{X_{2}=-1\right\}=q, \quad p+q=1
$$

Compute the moment generating function of $X_{1} X_{2}$.
7. Let X_{1}, \ldots, X_{n} be an i.i.d. sample from a $\operatorname{UNIF}(0, \theta)$ distribution, where $\theta>0$ is unknown. Find a 95% confidence interval for θ.
8. Let X_{1}, \ldots, X_{n} denote an independent sample from an exponential distribution with [unknown] mean $\theta>0$. What does the Neyman-Pearson lemma say about $H_{0}: \theta=1$ versus $H_{a}: \theta=2$? Explain carefully, and identify explicitly the rejection region.
9. Let m denote the median distance [in 1000 miles] required for a certain brand of automobile tires to wear out. Test to see whether or not $m \leq 29$, based on the following random sample:

$$
\begin{array}{llllllllll}
23 & 20 & 26 & 25 & 48 & 26 & 25 & 24 & 15 & 20
\end{array}
$$

10. Derive, using only first principles, the least-squares estimators of the slope and the intercept of a linear regression problem. What can you say about the optimality properties of those estimators?
11. The following data are times (in hours) between failures of air conditioning equipment in a particular airplane:

$$
\begin{array}{lllllllllllllll}
74 & 57 & 48 & 29 & 502 & 12 & 70 & 21 & 29 & 386 & 59 & 27 & 153 & 26 & 326 .
\end{array}
$$

Assume that the data are observed values of an i.i.d. random sample from an exponential distribution, $X_{i} \sim \operatorname{EXP}(\theta)$. Test $H_{0}: \theta=125$ versus $H_{a}: \theta \neq 125$. (A chi-square table is provided.)
12. A sample of 400 people was asked their degree of support of a balanced budget and their degree of support of public education, with the following results:

Education/Budget	Strong	Undecided	Weak
Strong	100	80	20
Undecided	60	80	20
Weak	20	50	5

Test the hypothesis of independence at $\alpha=0.05$. (A chi-square table is provided.)

TABLE 4
$100 \times \gamma$ th Percentiles $\chi_{\gamma}^{2}(v)$ of the chi-square distribution with v degrees of freedom
$\gamma=\int_{0}^{x_{1}^{2}(v)} h(y ; v) d y$

v	0.005	γ											
			0.025	0.050	0.100	0.250	0.500	0.750	0.900	0.950	0.975	0.990	0.995
		0.010	0.025										
					0.02	0.10	0.45	1.32	2.71	3.84	5.02 7.38	6.63 9.21	7.88 10.60
1				0.10	0.21	0.58	1.39	2.77	4.61	5.99	7.38 9.35	9.21 11.34	10.60
2	0.01	0.02	0.05	0.35	0.58	1.21	2.37	4.11	6.25	7.81	9.35	11.34	12.84
3	0.07	0.11	0.22	0.35	0.58	1.21	3.36	5.39	7.78	9.49	11.14	13.28	14.86
4	0.21	0.30	0.48	0.71	1.06	1.92 2.67	3.36 4.35	6.63	9.24	11.07	12.83	15.09	16.75
5	0.41	0.55	0.83	1.15	1.61	2.67	4.35	6.63					
							5.35	7.84	10.64	12.59	14.45	16.81	18.55
6	0.68	0.87	1.24	1.64	2.20 283	3.45 4.25	5.35 6.35	9.04	12.02	14.07	16.01	18.48	20.28
7	0.99	1.24	1.69	2.17	2.83 3.49	4.25	6.35 7.34	9.04 10.22	13.36	15.51	17.53	20.09	21.96
8	1.34	1.65	2.18	2.73	3.49	5.90	8.34	11.39	14.68	16.92	19.02	21.67	23.59
9	1.73	2.09	2.70	3.33	4.17 4.87	5.90 6.74	8.34 9.34	12.55	15.99	18.31	20.48	23.21	25.19
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.55					
							10.34	13.70	17.28	19.68	21.92	24.72	26.76
11	2.60	3.05	3.82	4.57	5.58 6.30	7.58 8.44	11.34	14.85	18.55	21.03	23.34	26.22	28.30
12	3.07	3.57	4.40	5.23	6.30 7.04	8.44 9.30	12.34	15.98	19.81	22.36	24.74	27.69	29.82
13	3.57	4.11	5.01	5.89	7.04 7.79	10.17	13.34	17.12	21.06	23.68	26.12	29.14	31.32
14	4.07	4.66	5.63	6.57 7.26	7.79 8.55	11.04	14.34	18.25	22.31	25.00	27.49	30.58	32.80
15	4.60	5.23	6.26	7.26	8.55	11.04	14.34	18.25					

16	5.14	5.81	6.91	7.96	9.31	11.91	15.34	19.37	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	12.79	16.34	20.49	24.77	27.59	30.19	33.41	35.73
18	6.26	7.01	8.23	9.39	10.86	13.68	17.34	21.60	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	14.56	18.34	22.72	27.20	30.14	32.85	36.19	35.58
20	7.43	8.26	9.59	10.85	12.44	15.45	19.34	23.83	28.41	31.41	34.17	37.57	40.00
21	8.03	8.90	10.28	11.59	13.24	16.34	20.34	24.93	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	17.24	21.34	26.04	30.81	33.92	36.78	40.29	42.80
23	9.26	10.20	11.69	13.09	14.85	18.14	22.34	27.14	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	19.04	23.34	28.24	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	19.94	24.34	29.34	34.38	37.65	40.65	44.31	46.93
30	13.79	14.95	16.79	18.49	20.60	24.48	29.34	34.80	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	33.66	39.34	45.62	51.80	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	37.69	42.94	49.33	56.33	63.17	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	46.46	52.29	59.33	66.98	74.40	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	55.33	61.70	69.33	77.58	85.53	90.53	95.02	100.42	104.22
80	51.17	53.54	57.15	60.39	64.28	71.14	79.33	88.13	96.58	101.88	106.63	112.33	116.32
90	59.20	61.75	65.65	69.13	73.29	80.62	89.33	98.64	107.56	113.14	118.14	124.12	128.30
100	67.33	70.06	74.22	77.93	82.36	90.13	99.33	109.14	118.50	124.34	129.56	135.81	140.17

[^0]
[^0]: For large $v, \chi_{y}^{2}(v) \doteq \nu\left[1-(2 / 9 v)+z_{y} \sqrt{(2 / 9 v)}\right]^{3}$.

