Statistics Prelim Exam

January 2016

You need to collect 60 points to pass the exam. You will get 10 points for the solution of each correct question.

1. Let X_{1}, \ldots, X_{n} be a random sample with density function $f(x)=2 e^{-2(x-\eta)}$ for $x>\eta$, and zero otherwise. We wish to test $H_{0}: \eta=4$ versus the alternative $H_{A}: \eta>4$. We reject H_{0} if $X_{(1)}=\min _{1 \leq i \leq n} X_{i} \geq 4+2 / n$.
(a) Compute the significance level of the test.
(b) Compute the power function.
2. Let X_{1}, \ldots, X_{n} be iid exponential(1) random variables. Find the joint pdf of the pair $\left(X_{(1)}, X_{(3)}\right)$, where $X_{(i)}$ denotes the i th order statistic, i.e.

$$
X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)} .
$$

3. Let X_{1} and X_{2} be independent with joint pdf $f(x)=x^{-2}$ for $1 \leq x<\infty$ and 0 otherwise.
(a) Find the joint pdf of $U=X_{1} X_{2}$ and $V=X_{2}$.
(b) Find the marginal pdf of U.
4. Assume that X_{1}, \ldots, X_{n} are a random sample with common pdf $f(x ; \theta)=$ $(\theta+1) x^{-\theta-2}$ for $x>1$, and zero otherwise. Is the method of moments estimator for θ the same as the maximum likelihood estimator for θ ?
5. Let X_{1}, \ldots, X_{n} be iid with the $\operatorname{Gamma}(\theta, \kappa)$ distribution, meaning that their common pdf is

$$
f(x ; \theta, \kappa)=\frac{1}{\theta^{\kappa} \Gamma(\kappa)} x^{\kappa-1} e^{-x / \theta}, \quad x>0,
$$

with κ known but θ unknown. Derive a $100(1-\alpha) \%$ equal-tailed confidence interval for θ based on the sufficient statistic.
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid exponential(1) random variables and

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

be the sample mean. Find two sequences of numbers a_{n} and b_{n} such that

$$
\frac{\log \bar{X}_{n}-a_{n}}{b_{n}}
$$

converges in distribution to a standard normal random variable.
7. Suppose that X_{1}, \ldots, X_{n} are iid from a $\operatorname{BETA}\left(\theta_{1}, \theta_{2}\right)$ distribution, meaning that the pdf is

$$
f\left(x ; \theta_{1}, \theta_{2}\right)=\frac{\Gamma\left(\theta_{1}+\theta_{2}\right)}{\Gamma\left(\theta_{1}\right) \Gamma\left(\theta_{2}\right)} x^{\theta_{1}-1}(1-x)^{\theta_{2}-1}, \quad 0<x<1
$$

Find jointly sufficient statistics for θ_{1} and θ_{2}, and use them to find a UMVUEs for θ_{1} and θ_{2}.
8. Let $Y_{1}<Y_{2}<\ldots<Y_{5}$ be the order statistics of a random sample of size $n=5$ from a distribution with pdf $f(x ; \theta)=e^{-|x-\theta|} / 2,-\infty<x<\infty$, with θ unknown. Find the likelihood ratio test λ for testing $H_{0}: \theta=\theta_{0}$ versus $H_{1}: \theta \neq \theta_{0}$.
9. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid from a distribution with CDF $F(x)=1-1 / x$ for $1 \leq x<\infty$, and zero otherwise.
(a) Derive the CDF of the smallest order statistic $X_{(1)}$.
(b) Find the limiting distribution of $X_{(1)}$.
(c) Find the limiting distribution of $X_{(1)}^{n}$.
10. Let X_{1}, \ldots, X_{n} be iid $\operatorname{Uniform}(0, \theta)$ with $\theta>0$, and $X_{(n)}$ be the largest order statistic.
(a) Find the probability that the random interval $\left(X_{(n)}, 2 X_{(n)}\right)$ contains θ.
(b) Find the constant c such that $\left(X_{(n)}, c X_{(n)}\right)$ is a $100(1-\alpha) \%$ confidence interval for θ.
11. Let X_{1}, \ldots, X_{n} be a random sample from the $\mathrm{N}(\theta, 1)$ distribution, θ unknown. We wish to test $H_{0}: \theta=\theta_{0}$ versus $H_{A}: \theta<\theta_{0}$. Find a test using the generalized likelihood ratio λ.
12. The distance in feet by which a parachutist misses a target is $D=\sqrt{X_{1}^{2}+X_{2}^{2}}$, where X_{1} and X_{2} are independent with $X_{i} \sim N(0,25)$. Find $\mathbb{P}(D \leq 12.25)$ (you can write down an integral for it, you don't need to evaluate it).

