Department of Mathematics
 University of Utah
 Real and Complex Analysis Preliminary Examination

Instructions. You must attempt at least 7 problems from this exam. To pass, you must demonstrate mastery of both real and complex analysis. Getting 3 problems correct on each section is sufficient to do this.

Part A: Real Analysis

Problem 1. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)<\infty$, and let $1 \leq s<t \leq \infty$. Show that $L^{t}(X) \subset L^{s}(X)$.

Problem 2.

Let H be a Hilbert space, $V \subset H$ a closed subspace, and $F \subset H$ a finite dimensional subspace, with $F \cap V=\{0\}$. show that there is a positive constant $\lambda<1$ such that $|\langle u, v\rangle| \leq \lambda\|u\|\|v\|$ for all $u \in F$ and $v \in V$.

Problem 3. Consider the interval $[-1,1]$ with a finite Borel measure μ (not assumed to be the Lebesgue measure). Let $C([-1,1])$ be the space of continuous functions endowed with the L^{2} norm, and let $T: C([-1,1]) \rightarrow \mathbb{R}$ be the operator $T(f)=f(0)$. Show that T is a bounded operator (with respect to the L^{2} norm) if and only if $\mu(\{0\})>0$.

Problem 4. Let (X, \mathcal{M}, μ) be a measure space, and suppose that A_{n} in \mathcal{M}, $n=1, \ldots$, with $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty$. Show that the set of x belonging to infinitely many A_{n} has measure zero.

Problem 5. For $f: \mathbb{R} \rightarrow \mathbb{R}$ and $y \in \mathbb{R}$, define $\tau_{y} f(x)=f(x-y)$ for $x \in \mathbb{R}$. Assume that \mathbb{R} is equipped with the Lebesgue measure. For $f \in$ $L^{1}(\mathbb{R})$ show that the map $\mathbb{R} \rightarrow L^{1}(\mathbb{R})$ defined by $y \rightarrow \tau_{y} f$ is uniformly continuous.

Part B: COMPLEX ANALYsis

Problem 1. Let $f(z)$ be an analytic function. Show that the successive derivatives of $f(z)$ at a point can never satisfy $\left|f^{(n)}(z)\right|>n!n^{n}$ for all n.

Problem 2. Let $\wp(z)$ be the Weierstrass \wp function. Prove that

$$
\wp(z+u)+\wp(z)+\wp(u)=\frac{1}{4}\left(\frac{\wp^{\prime}(z)-\wp^{\prime}(u)}{\wp(z)-\wp(u)}\right)^{2}
$$

Problem 3. Prove that every 1-1 conformal mapping of a disk onto another is given by a linear transformation.

Problem 4. Evaluation the integral by the method of residue:

$$
\int_{0}^{\infty} \frac{x^{2}}{x^{4}+5 x^{2}+6} d x
$$

Problem 5. The Bernoulli numbers B_{k} are defined in terms of the Laurent series

$$
\frac{1}{e^{z}-1}=\frac{1}{z}-\frac{1}{2}+\sum_{k=1}^{\infty}(-1)^{k-1} \frac{B_{k}}{(2 k)!} z^{2 k-1}
$$

(a) Find the Laurent series of cot πz in terms of the Bernoulli numbers.
(b) Using (a) and the fact on partial fractions

$$
\pi \cot \pi z=\frac{1}{z}+\sum_{k=1}^{\infty} \frac{2 z}{z^{2}-n^{2}}
$$

to prove

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}=2^{2 k-1} \frac{B_{k}}{(2 k)!} \pi^{2 k}
$$

for any positive integer k.

