Department of Mathematics
 University of Utah
 Real and Complex Analysis Preliminary Examination

January 7, 2011

Instructions: Do seven problems and list on the front of your blue book the seven problems to be graded. Do at least three problems from each part.

Part A:

Problem 1. Recall that a topological space is said to be separable if it contains a countable dense set. Also recall that $\ell^{p}(\mathbb{Z})$ is the L^{p}-space for counting measure on the integers. Prove or disprove the following statements:
(a) $\ell^{1}(\mathbb{Z})$ is separable.
(b) $\ell^{\infty}(\mathbb{Z})$ is separable.

Problem 2. Let f be a real-valued function on a measure space X. Prove or disprove the following statements:
(a) If f is measurable, then so is $|f|$.
(b) If $|f|$ is measurable, then so is f.

Problem 3. Let f be a continuous function on the circle $\left\{e^{i \theta} \mid 0 \leq \theta<2 \pi\right\}$. Let

$$
c_{n}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{-i n \theta} d \theta
$$

Prove or disprove:

$$
f\left(e^{i \theta}\right)=\lim _{N \rightarrow \infty}\left(\sum_{n=-N}^{N} c_{n} e^{i n \theta}\right)
$$

for all θ.
Problem 4. Let \mathbb{R} be equipped with Lebesque measure. Suppose $f \in L^{1}(\mathbb{R})$ is uniformly continuous. Prove that $\lim _{|x| \rightarrow \infty} f(x)=0$.
Problem 5. Let (X, μ) be a measure space, let $\left\{f_{n}\right\}$ be a sequence of nonnegative integrable functions, and assume there exists an integrable function f such that $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ almost everywhere. Further assume

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu \tag{1}
\end{equation*}
$$

Prove that

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| d \mu=0
$$

Show by example that this need not hold if the assumption (1) is omitted.

Part B:

Problem 6. Let f be holomorphic function defined on a domain $U \subset \mathbb{C}$. Let $\bar{U}=\{z \in \mathbb{C} \mid \bar{z} \in U\}$. Consider the function $g(z)=\overline{f(\bar{z})}$ on \bar{U}. Is g holomorphic or not? Explain your answer!

Problem 7. Let f be a meromorphic function on \mathbb{C} such that there exist $R, C>0$ and positive integer k such that $|f(z)| \leq C|z|^{k}$ for all $|z| \geq R$. Prove that f is a rational function.
Problem 8. Let f be a holomorphic function on $U \subset \mathbb{C}$. Let $a \in U$ and k a positive integer. Prove that the following statements are equivalent:
(i) a is a zero of order $\geq k$ of f;
(ii) there exist $C, \epsilon>0$ such that

$$
|f(z)| \leq C|z-a|^{k}
$$

for all z such that $|z-a|<\epsilon$.
Problem 9. Find all isolated singularities of the function

$$
f(z)=\sin (z) \sin \left(\frac{1}{z}\right)
$$

in \mathbb{C}. Determine the residues of f at these isolated singularities.
Problem 10. Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{x \sin x}{x^{2}+2 x+10} d x
$$

using the residue theorem.

