REAL AND COMPLEX ANALYSIS QUALIFYING EXAMINATION
 January, 2010

Complete seven of the following ten problems so that at least three of your solutions are for problems $1-5$ and at least three are for problems 6-10. Clearly indicate on the front of your blue book which seven problems are to be graded.

1. Let $[0,1]$ be the unit interval equipped, as usual, with Lebesque measure and fix $1 \leq p<\infty$. Suppose f_{1}, f_{2}, \ldots is a sequence in $L^{p}([0,1])$ which is Cauchy with respect to the L^{p} norm.
(a) Prove that there is a subsequence g_{1}, g_{2}, \ldots of f_{1}, f_{2}, \ldots such that $\lim _{i \rightarrow \infty} g_{i}(x)$ exists for almost x.
(a) Show (by producing an example of a Cauchy sequence f_{1}, f_{2}, \ldots in $\left.L^{p}([0,1])\right)$ that $\lim _{i \rightarrow \infty} f_{i}(x)$ can fail to exist for almost all x.
2. Suppose (X, \mathcal{M}, μ) is a measure space and that $L^{p}(X) \subset L^{q}(X)$ for some $1 \leq p<q<\infty$.
(a) Show that the inclusion map $L^{p}(X) \rightarrow L^{q}(X)$ is bounded.
(b) Let \mathcal{M}^{\prime} denote the subsets in \mathcal{M} of nonzero measure. Use (a) to prove that

$$
\inf _{E^{\prime} \in \mathcal{M}^{\prime}} \mu\left(E^{\prime}\right)>0
$$

3. Let H be a Hilbert space, and let $V \subsetneq H$ be a nonzero proper closed subspace. Let π_{V} be the orthogonal projection onto V.
(a) Show that π_{V} has operator norm 1 , is idempotent (i.e. $\pi_{V}^{2}=\pi_{V}$), and is self-adjoint (i.e. $\pi_{V}^{*}=\pi_{V}$).
(b) Conversely, if $P: H \rightarrow H$ is a self-adjoint idempotent continuous linear transformation of operator norm 1, show that $P=\pi_{V}$ for some closed subspace of H.
4. (a) Let ℓ^{1} and ℓ^{∞} denote the Banach spaces of sequences of complex numbers $\xi=\left(\xi_{1}, \xi_{2}, \ldots\right)$ such that

$$
\begin{aligned}
& \xi \in \ell^{1} \text { iff }\|\xi\|_{1}:=\sum_{i=1}^{\infty}\left|\xi_{i}\right|<\infty \\
& \xi \in \ell^{\infty} \text { iff }\|\xi\|_{\infty}:=\sup _{i}\left|\xi_{i}\right|<\infty
\end{aligned}
$$

Let $\left(\ell^{\infty}\right)^{*}$ denote the Banach space of continuous linear functionals (equipped with the operator norm) on ℓ^{∞}. Show that the map $\Lambda: \ell^{1} \rightarrow\left(\ell^{\infty}\right)^{*}$ defined by

$$
\Lambda(\xi)\left(\eta_{1}, \eta_{2}, \ldots\right)=\sum_{i} \xi_{i} \eta_{i}
$$

is a well-defined norm-preserving injection of ℓ^{1} into $\left(\ell^{\infty}\right)^{*}$ which is not onto. (Hint for the failure of surjectivity: show that $\left(\ell^{\infty}\right)^{*}$ contains nontrivial functionals which vanish on the subspace consisting of those ξ such that $\xi_{i} \rightarrow 0$ as $i \rightarrow \infty$.)
(b) Let (X, μ) be a measure space. State (without proof) precise conditions on μ, p, and q guaranteeing that there is a norm-preserving isomorphism of $L^{p}(X)$ onto $L^{q}(X)^{*}$.
5. Let (X, \mathcal{M}, μ) be a measure space such that $\mu(X)<\infty$. Let $f: X \rightarrow X$ be a measure-preserving transformation in the sense that $\mu(E)=\mu(f(E))$ for all $E \in \mathcal{M}$. Prove that for any $E \in \mathcal{M}$, the set of those points x of E such that $f^{n}(x) \notin E$ for all $n>0$ has zero measure. (Hint: suppose not and derive a contradiction with $\mu(X)<\infty$.)
6. Let

$$
f(z)=\frac{6 z+2}{\left(z^{2}-1\right)(z+3)}
$$

(a) Use the residue theorem to compute $\int_{\gamma} f(z) d z$ where γ is the positively oriented circle $|z|=2$.
(b) Compute the Laurent series for $f(x)$ which converges in the annulus $1<$ $|z|<3$. Use this computation to check the value of the integral in (a).
7. Let n be a positive integer. Use a contour integral to compute

$$
\int_{0}^{2 \pi} \cos ^{2 n}(\theta) d \theta
$$

in terms of n.
8. Let U be an open connected domain in the complex plane,and let f be an analytic function on U.
(a) Prove or disprove: If f is injective on U, then its complex derivative $d f / d z$ is never zero on U.
(b) Prove or disprove: If $d f / d z$ is never zero on U, then f is injective on U.
9. Find all conformal transformations $f(z)$ from the upper half disc $\{z||z|<$ 2 and $\Re(z)>0\}$ to the unit $\operatorname{disc}\{z||z|<1\}$ with the property that $f(i)=0$. It suffices to exhibit your solutions as compositions of more elementary functions.
10. Let $f(z)$ be analytic in the unit disc $\{z||z|<1\}$ and have bounded modulus in the sense that $|f(z)| \leq M$ for all z in the disc. Let $0<r<1$. Find a constant C depending on M and r so that for all points z, w of modulus less than r,

$$
|f(z)-f(w)| \leq C|z-w|
$$

